Cargando…

Tunable hybrid zeolites prepared by partial interconversion

Zeolite interconversion is a widely used strategy due to its unique advantages in the synthesis of some zeolites. By using a long-chain quaternary amine as both a structure-directing agent and porogen, we have produced superior catalysts, which we named Hybrid Zeolites, as their structures are made...

Descripción completa

Detalles Bibliográficos
Autores principales: Mendoza-Castro, Monica J., Qie, Zhipeng, Fan, Xiaolei, Linares, Noemi, García-Martínez, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988824/
https://www.ncbi.nlm.nih.gov/pubmed/36878918
http://dx.doi.org/10.1038/s41467-023-36502-3
Descripción
Sumario:Zeolite interconversion is a widely used strategy due to its unique advantages in the synthesis of some zeolites. By using a long-chain quaternary amine as both a structure-directing agent and porogen, we have produced superior catalysts, which we named Hybrid Zeolites, as their structures are made of building units of different zeolite types. The properties of these materials can be conveniently tuned, and their catalytic performance can be optimized simply by stopping the interconversion at different times. For cracking the 1,3,5-triisopropylbenzene, Hybrid Zeolites made of FAU and MFI units show a 5-fold increase in selectivity towards the desired product, that is, 1,3-diisopropylbenzene, compared to the commercial FAU, and a 7-fold increase in conversion at constant selectivity compared to MFI zeolite.