Cargando…
Tunable hybrid zeolites prepared by partial interconversion
Zeolite interconversion is a widely used strategy due to its unique advantages in the synthesis of some zeolites. By using a long-chain quaternary amine as both a structure-directing agent and porogen, we have produced superior catalysts, which we named Hybrid Zeolites, as their structures are made...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988824/ https://www.ncbi.nlm.nih.gov/pubmed/36878918 http://dx.doi.org/10.1038/s41467-023-36502-3 |
Sumario: | Zeolite interconversion is a widely used strategy due to its unique advantages in the synthesis of some zeolites. By using a long-chain quaternary amine as both a structure-directing agent and porogen, we have produced superior catalysts, which we named Hybrid Zeolites, as their structures are made of building units of different zeolite types. The properties of these materials can be conveniently tuned, and their catalytic performance can be optimized simply by stopping the interconversion at different times. For cracking the 1,3,5-triisopropylbenzene, Hybrid Zeolites made of FAU and MFI units show a 5-fold increase in selectivity towards the desired product, that is, 1,3-diisopropylbenzene, compared to the commercial FAU, and a 7-fold increase in conversion at constant selectivity compared to MFI zeolite. |
---|