Cargando…
Machine learning-based CT radiomics model to discriminate the primary and secondary intracranial hemorrhage
It is challenging to distinguish between primary and secondary intracranial hemorrhage (ICH) purely by imaging data, and the two forms of ICHs are treated differently. This study aims to evaluate the potential of CT-based machine learning to identify the etiology of ICHs and compare the effectivenes...
Autores principales: | Lyu, Jianbo, Xu, Zhaohui, Sun, HaiYan, Zhai, Fangbing, Qu, Xiaofeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988881/ https://www.ncbi.nlm.nih.gov/pubmed/36879050 http://dx.doi.org/10.1038/s41598-023-30678-w |
Ejemplares similares
-
Prognostic prediction of hypertensive intracerebral hemorrhage using CT radiomics and machine learning
por: Xu, Xinghua, et al.
Publicado: (2021) -
CT Angiography-Based Radiomics for Classification of Intracranial Aneurysm Rupture
por: Alwalid, Osamah, et al.
Publicado: (2021) -
Takotsubo cardiomyopathy secondary to intracranial hemorrhage
por: Shimada, Mai, et al.
Publicado: (2014) -
PItcHPERFeCT: Primary Intracranial Hemorrhage Probability Estimation using Random Forests on CT
por: Muschelli, John, et al.
Publicado: (2017) -
Application of CT-Based Radiomics in Discriminating Pancreatic Cystadenomas From Pancreatic Neuroendocrine Tumors Using Machine Learning Methods
por: Han, Xuejiao, et al.
Publicado: (2021)