Cargando…

Delivery of spike-RBD by bacterial type three secretion system for SARS-CoV-2 vaccine development

COVID-19 pandemic continues to spread throughout the world with an urgent demand for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a bacterial vector COVID-19 vaccine (aPA-RBD) that carries the gene for the recept...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yuchen, Qu, Jing, Sun, Xiaomeng, Yue, Zhuo, Liu, Yingzi, Zhao, Keli, Yang, Fan, Feng, Jie, Pan, Xiaolei, Jin, Yongxin, Cheng, Zhihui, Yang, Liang, Ha, Un-Hwan, Wu, Weihui, Li, Liang, Bai, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988893/
https://www.ncbi.nlm.nih.gov/pubmed/36895557
http://dx.doi.org/10.3389/fimmu.2023.1129705
Descripción
Sumario:COVID-19 pandemic continues to spread throughout the world with an urgent demand for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a bacterial vector COVID-19 vaccine (aPA-RBD) that carries the gene for the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Live-attenuated strains of Pseudomonas aeruginosa (aPA) were constructed which express the recombinant RBD and effectively deliver RBD protein into various antigen presenting cells through bacterial type 3 secretion system (T3SS) in vitro. In mice, two-dose of intranasal aPA-RBD vaccinations elicited the development of RBD-specific serum IgG and IgM. Importantly, the sera from the immunized mice were able to neutralize host cell infections by SARS-CoV-2 pseudovirus as well as the authentic virus variants potently. T-cell responses of immunized mice were assessed by enzyme-linked immunospot (ELISPOT) and intracellular cytokine staining (ICS) assays. aPA-RBD vaccinations can elicit RBD-specific CD4(+)and CD8(+)T cell responses. T3SS-based RBD intracellular delivery heightens the efficiency of antigen presentation and enables the aPA-RBD vaccine to elicit CD8(+)T cell response. Thus, aPA vector has the potential as an inexpensive, readily manufactured, and respiratory tract vaccination route vaccine platform for other pathogens