Cargando…
Together we are strong! Collaboration between clinicians and engineers as an enabler for better diagnosis and therapy of atrial arrhythmias
Autores principales: | Loewe, Axel, Luik, Armin, Sassi, Roberto, Laguna, Pablo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988996/ https://www.ncbi.nlm.nih.gov/pubmed/36746836 http://dx.doi.org/10.1007/s11517-023-02788-0 |
Ejemplares similares
-
Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG
por: Luongo, Giorgio, et al.
Publicado: (2021) -
Atrial Flutter Mechanism Detection Using Directed Network Mapping
por: Vila, Muhamed, et al.
Publicado: (2021) -
Patient-Specific Identification of Atrial Flutter Vulnerability–A Computational Approach to Reveal Latent Reentry Pathways
por: Loewe, Axel, et al.
Publicado: (2019) -
We may not have it all together, but together we have it all. The importance of intra- and interdisciplinary collaboration
por: Campo, R., et al.
Publicado: (2013) -
Using Machine Learning to Characterize Atrial Fibrotic Substrate From Intracardiac Signals With a Hybrid in silico and in vivo Dataset
por: Sánchez, Jorge, et al.
Publicado: (2021)