Cargando…
EG-TransUNet: a transformer-based U-Net with enhanced and guided models for biomedical image segmentation
Although various methods based on convolutional neural networks have improved the performance of biomedical image segmentation to meet the precision requirements of medical imaging segmentation task, medical image segmentation methods based on deep learning still need to solve the following problems...
Autores principales: | Pan, Shaoming, Liu, Xin, Xie, Ningdi, Chong, Yanwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989586/ https://www.ncbi.nlm.nih.gov/pubmed/36882688 http://dx.doi.org/10.1186/s12859-023-05196-1 |
Ejemplares similares
-
P-TransUNet: an improved parallel network for medical image segmentation
por: Chong, Yanwen, et al.
Publicado: (2023) -
nn-TransUNet: An Automatic Deep Learning Pipeline for Heart MRI Segmentation
por: Zhao, Li, et al.
Publicado: (2022) -
Accurate segmentation algorithm of acoustic neuroma in the cerebellopontine angle based on ACP-TransUNet
por: Zhang, Zhuo, et al.
Publicado: (2023) -
Accurate classification of lung nodules on CT images using the TransUnet
por: Wang, Hongfeng, et al.
Publicado: (2022) -
SD-UNet: Stripping down U-Net for Segmentation of Biomedical Images on Platforms with Low Computational Budgets
por: Gadosey, Pius Kwao, et al.
Publicado: (2020)