Cargando…

Protocol for analysis of liquid chromatography-mass spectrometry metabolomics data using R to understand how metabolites affect disease

Liquid-chromatography-mass-spectrometry-based metabolomics is widely used in prospective case-control studies for disease prediction. Given the large amount of clinical and metabolomics data involved, data integration and analyses are crucial to provide an accurate understanding of the disease. We p...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Hong, Hu, Chunyan, Wang, Shuangyuan, Xu, Yu, Xu, Min, Bi, Yufang, Lu, Jieli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989686/
https://www.ncbi.nlm.nih.gov/pubmed/36861827
http://dx.doi.org/10.1016/j.xpro.2023.102137
_version_ 1784901812049936384
author Lin, Hong
Hu, Chunyan
Wang, Shuangyuan
Xu, Yu
Xu, Min
Bi, Yufang
Lu, Jieli
author_facet Lin, Hong
Hu, Chunyan
Wang, Shuangyuan
Xu, Yu
Xu, Min
Bi, Yufang
Lu, Jieli
author_sort Lin, Hong
collection PubMed
description Liquid-chromatography-mass-spectrometry-based metabolomics is widely used in prospective case-control studies for disease prediction. Given the large amount of clinical and metabolomics data involved, data integration and analyses are crucial to provide an accurate understanding of the disease. We provide a comprehensive analysis approach to explore associations among clinical risk factors, metabolites, and disease. We describe steps for performing Spearman correlation, conditional logistic regression, casual mediation, and variance partitioning to investigate the potential effects of metabolites on disease. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).(1)
format Online
Article
Text
id pubmed-9989686
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-99896862023-03-08 Protocol for analysis of liquid chromatography-mass spectrometry metabolomics data using R to understand how metabolites affect disease Lin, Hong Hu, Chunyan Wang, Shuangyuan Xu, Yu Xu, Min Bi, Yufang Lu, Jieli STAR Protoc Protocol Liquid-chromatography-mass-spectrometry-based metabolomics is widely used in prospective case-control studies for disease prediction. Given the large amount of clinical and metabolomics data involved, data integration and analyses are crucial to provide an accurate understanding of the disease. We provide a comprehensive analysis approach to explore associations among clinical risk factors, metabolites, and disease. We describe steps for performing Spearman correlation, conditional logistic regression, casual mediation, and variance partitioning to investigate the potential effects of metabolites on disease. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).(1) Elsevier 2023-02-27 /pmc/articles/PMC9989686/ /pubmed/36861827 http://dx.doi.org/10.1016/j.xpro.2023.102137 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Lin, Hong
Hu, Chunyan
Wang, Shuangyuan
Xu, Yu
Xu, Min
Bi, Yufang
Lu, Jieli
Protocol for analysis of liquid chromatography-mass spectrometry metabolomics data using R to understand how metabolites affect disease
title Protocol for analysis of liquid chromatography-mass spectrometry metabolomics data using R to understand how metabolites affect disease
title_full Protocol for analysis of liquid chromatography-mass spectrometry metabolomics data using R to understand how metabolites affect disease
title_fullStr Protocol for analysis of liquid chromatography-mass spectrometry metabolomics data using R to understand how metabolites affect disease
title_full_unstemmed Protocol for analysis of liquid chromatography-mass spectrometry metabolomics data using R to understand how metabolites affect disease
title_short Protocol for analysis of liquid chromatography-mass spectrometry metabolomics data using R to understand how metabolites affect disease
title_sort protocol for analysis of liquid chromatography-mass spectrometry metabolomics data using r to understand how metabolites affect disease
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989686/
https://www.ncbi.nlm.nih.gov/pubmed/36861827
http://dx.doi.org/10.1016/j.xpro.2023.102137
work_keys_str_mv AT linhong protocolforanalysisofliquidchromatographymassspectrometrymetabolomicsdatausingrtounderstandhowmetabolitesaffectdisease
AT huchunyan protocolforanalysisofliquidchromatographymassspectrometrymetabolomicsdatausingrtounderstandhowmetabolitesaffectdisease
AT wangshuangyuan protocolforanalysisofliquidchromatographymassspectrometrymetabolomicsdatausingrtounderstandhowmetabolitesaffectdisease
AT xuyu protocolforanalysisofliquidchromatographymassspectrometrymetabolomicsdatausingrtounderstandhowmetabolitesaffectdisease
AT xumin protocolforanalysisofliquidchromatographymassspectrometrymetabolomicsdatausingrtounderstandhowmetabolitesaffectdisease
AT biyufang protocolforanalysisofliquidchromatographymassspectrometrymetabolomicsdatausingrtounderstandhowmetabolitesaffectdisease
AT lujieli protocolforanalysisofliquidchromatographymassspectrometrymetabolomicsdatausingrtounderstandhowmetabolitesaffectdisease