Cargando…
Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review
IMPORTANCE: Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE: To systematically assess the risk of b...
Autores principales: | Chen, Zhiyi, Liu, Xuerong, Yang, Qingwu, Wang, Yan-Jiang, Miao, Kuan, Gong, Zheng, Yu, Yang, Leonov, Artemiy, Liu, Chunlei, Feng, Zhengzhi, Chuan-Peng, Hu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989906/ https://www.ncbi.nlm.nih.gov/pubmed/36877519 http://dx.doi.org/10.1001/jamanetworkopen.2023.1671 |
Ejemplares similares
-
Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry
por: Chen, Zhiyi, et al.
Publicado: (2023) -
Revision and psychometric properties of the negative cognitive processing bias scale
por: Miao, Kuan, et al.
Publicado: (2022) -
Attitude and Performance for Online Learning during COVID-19 Pandemic: A Meta-Analytic Evidence
por: Liu, Xuerong, et al.
Publicado: (2022) -
Engaging the open science framework in quantifying and tracing scientists’ research credits
por: Chen, Zhiyi, et al.
Publicado: (2023) -
Artificial intelligence for molecular neuroimaging
por: Boyle, Amanda J., et al.
Publicado: (2021)