Cargando…
Toward an Integrated Machine Learning Model of a Proteomics Experiment
[Image: see text] In recent years machine learning has made extensive progress in modeling many aspects of mass spectrometry data. We brought together proteomics data generators, repository managers, and machine learning experts in a workshop with the goals to evaluate and explore machine learning a...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990124/ https://www.ncbi.nlm.nih.gov/pubmed/36744821 http://dx.doi.org/10.1021/acs.jproteome.2c00711 |
_version_ | 1784901877951889408 |
---|---|
author | Neely, Benjamin A. Dorfer, Viktoria Martens, Lennart Bludau, Isabell Bouwmeester, Robbin Degroeve, Sven Deutsch, Eric W. Gessulat, Siegfried Käll, Lukas Palczynski, Pawel Payne, Samuel H. Rehfeldt, Tobias Greisager Schmidt, Tobias Schwämmle, Veit Uszkoreit, Julian Vizcaíno, Juan Antonio Wilhelm, Mathias Palmblad, Magnus |
author_facet | Neely, Benjamin A. Dorfer, Viktoria Martens, Lennart Bludau, Isabell Bouwmeester, Robbin Degroeve, Sven Deutsch, Eric W. Gessulat, Siegfried Käll, Lukas Palczynski, Pawel Payne, Samuel H. Rehfeldt, Tobias Greisager Schmidt, Tobias Schwämmle, Veit Uszkoreit, Julian Vizcaíno, Juan Antonio Wilhelm, Mathias Palmblad, Magnus |
author_sort | Neely, Benjamin A. |
collection | PubMed |
description | [Image: see text] In recent years machine learning has made extensive progress in modeling many aspects of mass spectrometry data. We brought together proteomics data generators, repository managers, and machine learning experts in a workshop with the goals to evaluate and explore machine learning applications for realistic modeling of data from multidimensional mass spectrometry-based proteomics analysis of any sample or organism. Following this sample-to-data roadmap helped identify knowledge gaps and define needs. Being able to generate bespoke and realistic synthetic data has legitimate and important uses in system suitability, method development, and algorithm benchmarking, while also posing critical ethical questions. The interdisciplinary nature of the workshop informed discussions of what is currently possible and future opportunities and challenges. In the following perspective we summarize these discussions in the hope of conveying our excitement about the potential of machine learning in proteomics and to inspire future research. |
format | Online Article Text |
id | pubmed-9990124 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99901242023-03-08 Toward an Integrated Machine Learning Model of a Proteomics Experiment Neely, Benjamin A. Dorfer, Viktoria Martens, Lennart Bludau, Isabell Bouwmeester, Robbin Degroeve, Sven Deutsch, Eric W. Gessulat, Siegfried Käll, Lukas Palczynski, Pawel Payne, Samuel H. Rehfeldt, Tobias Greisager Schmidt, Tobias Schwämmle, Veit Uszkoreit, Julian Vizcaíno, Juan Antonio Wilhelm, Mathias Palmblad, Magnus J Proteome Res [Image: see text] In recent years machine learning has made extensive progress in modeling many aspects of mass spectrometry data. We brought together proteomics data generators, repository managers, and machine learning experts in a workshop with the goals to evaluate and explore machine learning applications for realistic modeling of data from multidimensional mass spectrometry-based proteomics analysis of any sample or organism. Following this sample-to-data roadmap helped identify knowledge gaps and define needs. Being able to generate bespoke and realistic synthetic data has legitimate and important uses in system suitability, method development, and algorithm benchmarking, while also posing critical ethical questions. The interdisciplinary nature of the workshop informed discussions of what is currently possible and future opportunities and challenges. In the following perspective we summarize these discussions in the hope of conveying our excitement about the potential of machine learning in proteomics and to inspire future research. American Chemical Society 2023-02-06 /pmc/articles/PMC9990124/ /pubmed/36744821 http://dx.doi.org/10.1021/acs.jproteome.2c00711 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Neely, Benjamin A. Dorfer, Viktoria Martens, Lennart Bludau, Isabell Bouwmeester, Robbin Degroeve, Sven Deutsch, Eric W. Gessulat, Siegfried Käll, Lukas Palczynski, Pawel Payne, Samuel H. Rehfeldt, Tobias Greisager Schmidt, Tobias Schwämmle, Veit Uszkoreit, Julian Vizcaíno, Juan Antonio Wilhelm, Mathias Palmblad, Magnus Toward an Integrated Machine Learning Model of a Proteomics Experiment |
title | Toward an
Integrated Machine Learning Model of a Proteomics
Experiment |
title_full | Toward an
Integrated Machine Learning Model of a Proteomics
Experiment |
title_fullStr | Toward an
Integrated Machine Learning Model of a Proteomics
Experiment |
title_full_unstemmed | Toward an
Integrated Machine Learning Model of a Proteomics
Experiment |
title_short | Toward an
Integrated Machine Learning Model of a Proteomics
Experiment |
title_sort | toward an
integrated machine learning model of a proteomics
experiment |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990124/ https://www.ncbi.nlm.nih.gov/pubmed/36744821 http://dx.doi.org/10.1021/acs.jproteome.2c00711 |
work_keys_str_mv | AT neelybenjamina towardanintegratedmachinelearningmodelofaproteomicsexperiment AT dorferviktoria towardanintegratedmachinelearningmodelofaproteomicsexperiment AT martenslennart towardanintegratedmachinelearningmodelofaproteomicsexperiment AT bludauisabell towardanintegratedmachinelearningmodelofaproteomicsexperiment AT bouwmeesterrobbin towardanintegratedmachinelearningmodelofaproteomicsexperiment AT degroevesven towardanintegratedmachinelearningmodelofaproteomicsexperiment AT deutschericw towardanintegratedmachinelearningmodelofaproteomicsexperiment AT gessulatsiegfried towardanintegratedmachinelearningmodelofaproteomicsexperiment AT kalllukas towardanintegratedmachinelearningmodelofaproteomicsexperiment AT palczynskipawel towardanintegratedmachinelearningmodelofaproteomicsexperiment AT paynesamuelh towardanintegratedmachinelearningmodelofaproteomicsexperiment AT rehfeldttobiasgreisager towardanintegratedmachinelearningmodelofaproteomicsexperiment AT schmidttobias towardanintegratedmachinelearningmodelofaproteomicsexperiment AT schwammleveit towardanintegratedmachinelearningmodelofaproteomicsexperiment AT uszkoreitjulian towardanintegratedmachinelearningmodelofaproteomicsexperiment AT vizcainojuanantonio towardanintegratedmachinelearningmodelofaproteomicsexperiment AT wilhelmmathias towardanintegratedmachinelearningmodelofaproteomicsexperiment AT palmbladmagnus towardanintegratedmachinelearningmodelofaproteomicsexperiment |