Cargando…

Toward an Integrated Machine Learning Model of a Proteomics Experiment

[Image: see text] In recent years machine learning has made extensive progress in modeling many aspects of mass spectrometry data. We brought together proteomics data generators, repository managers, and machine learning experts in a workshop with the goals to evaluate and explore machine learning a...

Descripción completa

Detalles Bibliográficos
Autores principales: Neely, Benjamin A., Dorfer, Viktoria, Martens, Lennart, Bludau, Isabell, Bouwmeester, Robbin, Degroeve, Sven, Deutsch, Eric W., Gessulat, Siegfried, Käll, Lukas, Palczynski, Pawel, Payne, Samuel H., Rehfeldt, Tobias Greisager, Schmidt, Tobias, Schwämmle, Veit, Uszkoreit, Julian, Vizcaíno, Juan Antonio, Wilhelm, Mathias, Palmblad, Magnus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990124/
https://www.ncbi.nlm.nih.gov/pubmed/36744821
http://dx.doi.org/10.1021/acs.jproteome.2c00711
_version_ 1784901877951889408
author Neely, Benjamin A.
Dorfer, Viktoria
Martens, Lennart
Bludau, Isabell
Bouwmeester, Robbin
Degroeve, Sven
Deutsch, Eric W.
Gessulat, Siegfried
Käll, Lukas
Palczynski, Pawel
Payne, Samuel H.
Rehfeldt, Tobias Greisager
Schmidt, Tobias
Schwämmle, Veit
Uszkoreit, Julian
Vizcaíno, Juan Antonio
Wilhelm, Mathias
Palmblad, Magnus
author_facet Neely, Benjamin A.
Dorfer, Viktoria
Martens, Lennart
Bludau, Isabell
Bouwmeester, Robbin
Degroeve, Sven
Deutsch, Eric W.
Gessulat, Siegfried
Käll, Lukas
Palczynski, Pawel
Payne, Samuel H.
Rehfeldt, Tobias Greisager
Schmidt, Tobias
Schwämmle, Veit
Uszkoreit, Julian
Vizcaíno, Juan Antonio
Wilhelm, Mathias
Palmblad, Magnus
author_sort Neely, Benjamin A.
collection PubMed
description [Image: see text] In recent years machine learning has made extensive progress in modeling many aspects of mass spectrometry data. We brought together proteomics data generators, repository managers, and machine learning experts in a workshop with the goals to evaluate and explore machine learning applications for realistic modeling of data from multidimensional mass spectrometry-based proteomics analysis of any sample or organism. Following this sample-to-data roadmap helped identify knowledge gaps and define needs. Being able to generate bespoke and realistic synthetic data has legitimate and important uses in system suitability, method development, and algorithm benchmarking, while also posing critical ethical questions. The interdisciplinary nature of the workshop informed discussions of what is currently possible and future opportunities and challenges. In the following perspective we summarize these discussions in the hope of conveying our excitement about the potential of machine learning in proteomics and to inspire future research.
format Online
Article
Text
id pubmed-9990124
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-99901242023-03-08 Toward an Integrated Machine Learning Model of a Proteomics Experiment Neely, Benjamin A. Dorfer, Viktoria Martens, Lennart Bludau, Isabell Bouwmeester, Robbin Degroeve, Sven Deutsch, Eric W. Gessulat, Siegfried Käll, Lukas Palczynski, Pawel Payne, Samuel H. Rehfeldt, Tobias Greisager Schmidt, Tobias Schwämmle, Veit Uszkoreit, Julian Vizcaíno, Juan Antonio Wilhelm, Mathias Palmblad, Magnus J Proteome Res [Image: see text] In recent years machine learning has made extensive progress in modeling many aspects of mass spectrometry data. We brought together proteomics data generators, repository managers, and machine learning experts in a workshop with the goals to evaluate and explore machine learning applications for realistic modeling of data from multidimensional mass spectrometry-based proteomics analysis of any sample or organism. Following this sample-to-data roadmap helped identify knowledge gaps and define needs. Being able to generate bespoke and realistic synthetic data has legitimate and important uses in system suitability, method development, and algorithm benchmarking, while also posing critical ethical questions. The interdisciplinary nature of the workshop informed discussions of what is currently possible and future opportunities and challenges. In the following perspective we summarize these discussions in the hope of conveying our excitement about the potential of machine learning in proteomics and to inspire future research. American Chemical Society 2023-02-06 /pmc/articles/PMC9990124/ /pubmed/36744821 http://dx.doi.org/10.1021/acs.jproteome.2c00711 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Neely, Benjamin A.
Dorfer, Viktoria
Martens, Lennart
Bludau, Isabell
Bouwmeester, Robbin
Degroeve, Sven
Deutsch, Eric W.
Gessulat, Siegfried
Käll, Lukas
Palczynski, Pawel
Payne, Samuel H.
Rehfeldt, Tobias Greisager
Schmidt, Tobias
Schwämmle, Veit
Uszkoreit, Julian
Vizcaíno, Juan Antonio
Wilhelm, Mathias
Palmblad, Magnus
Toward an Integrated Machine Learning Model of a Proteomics Experiment
title Toward an Integrated Machine Learning Model of a Proteomics Experiment
title_full Toward an Integrated Machine Learning Model of a Proteomics Experiment
title_fullStr Toward an Integrated Machine Learning Model of a Proteomics Experiment
title_full_unstemmed Toward an Integrated Machine Learning Model of a Proteomics Experiment
title_short Toward an Integrated Machine Learning Model of a Proteomics Experiment
title_sort toward an integrated machine learning model of a proteomics experiment
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990124/
https://www.ncbi.nlm.nih.gov/pubmed/36744821
http://dx.doi.org/10.1021/acs.jproteome.2c00711
work_keys_str_mv AT neelybenjamina towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT dorferviktoria towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT martenslennart towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT bludauisabell towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT bouwmeesterrobbin towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT degroevesven towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT deutschericw towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT gessulatsiegfried towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT kalllukas towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT palczynskipawel towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT paynesamuelh towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT rehfeldttobiasgreisager towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT schmidttobias towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT schwammleveit towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT uszkoreitjulian towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT vizcainojuanantonio towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT wilhelmmathias towardanintegratedmachinelearningmodelofaproteomicsexperiment
AT palmbladmagnus towardanintegratedmachinelearningmodelofaproteomicsexperiment