Cargando…
Developing a predictive model for clinically significant prostate cancer by combining age, PSA density, and mpMRI
PURPOSE: The study aimed to construct a predictive model for clinically significant prostate cancer (csPCa) and investigate its clinical efficacy to reduce unnecessary prostate biopsies. METHODS: A total of 847 patients from institute 1 were included in cohort 1 for model development. Cohort 2 inclu...
Autores principales: | Ma, Zengni, Wang, Xinchao, Zhang, Wanchun, Gao, Kaisheng, Wang, Le, Qian, Lixia, Mu, Jingjun, Zheng, Zhongyi, Cao, Xiaoming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990202/ https://www.ncbi.nlm.nih.gov/pubmed/36882854 http://dx.doi.org/10.1186/s12957-023-02959-1 |
Ejemplares similares
-
Performance of prostate health index and PSA density in a diverse biopsy‐naïve cohort with mpMRI for detecting significant prostate cancer
por: Carbunaru, Samuel, et al.
Publicado: (2021) -
Comparison of Proclarix, PSA Density and MRI-ERSPC Risk Calculator to Select Patients for Prostate Biopsy after mpMRI
por: Campistol, Miriam, et al.
Publicado: (2022) -
Role of mpMRI of the prostate in screening for prostate cancer
por: Wallis, Christopher J. D., et al.
Publicado: (2017) -
Detection of clinically significant prostate cancer with PI-RADS v2 scores, PSA density, and ADC values in regions with and without mpMRI visible lesions
por: Westphalen, Antonio C., et al.
Publicado: (2019) -
AI-predicted mpMRI image features for the prediction of clinically significant prostate cancer
por: Li, Song, et al.
Publicado: (2023)