Cargando…
In-silico computational approaches to study microbiota impacts on diseases and pharmacotherapy
Microorganisms have been linked to a variety of critical human disease, thanks to advances in sequencing technology and microbiology. The growing recognition of human microbe–disease relationships provides crucial insights into the underlying disease process from the perspective of pathogens, which...
Autores principales: | Shokri Garjan, Hassan, Omidi, Yadollah, Poursheikhali Asghari, Mehdi, Ferdousi, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990230/ https://www.ncbi.nlm.nih.gov/pubmed/36882861 http://dx.doi.org/10.1186/s13099-023-00535-2 |
Ejemplares similares
-
SYNDEEP: a deep learning approach for the prediction of cancer drugs synergy
por: Torkamannia, Anna, et al.
Publicado: (2023) -
Computerized techniques pave the way for drug-drug interaction prediction and interpretation
por: Safdari, Reza, et al.
Publicado: (2016) -
Next-generation vaccines and the impacts of state-of-the-art in-silico technologies
por: Salemi, Aysan, et al.
Publicado: (2021) -
Prediction of RNA- and DNA-Binding Proteins Using Various Machine Learning Classifiers
por: Poursheikhali Asghari, Mehdi, et al.
Publicado: (2019) -
Pleiotropic cytotoxicity of VacA toxin in host cells and its impact on immunotherapy
por: Fahimi, Farnaz, et al.
Publicado: (2017)