Cargando…
INSnet: a method for detecting insertions based on deep learning network
BACKGROUND: Many studies have shown that structural variations (SVs) strongly impact human disease. As a common type of SV, insertions are usually associated with genetic diseases. Therefore, accurately detecting insertions is of great significance. Although many methods for detecting insertions hav...
Autores principales: | Gao, Runtian, Luo, Junwei, Ding, Hongyu, Zhai, Haixia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990265/ https://www.ncbi.nlm.nih.gov/pubmed/36879189 http://dx.doi.org/10.1186/s12859-023-05216-0 |
Ejemplares similares
-
LSnet: detecting and genotyping deletions using deep learning network
por: Luo, Junwei, et al.
Publicado: (2023) -
BreakNet: detecting deletions using long reads and a deep learning approach
por: Luo, Junwei, et al.
Publicado: (2021) -
Deep learning approach for cancer subtype classification using high-dimensional gene expression data
por: Shen, Jiquan, et al.
Publicado: (2022) -
SIns: A Novel Insertion Detection Approach Based on Soft-Clipped Reads
por: Yan, Chaokun, et al.
Publicado: (2021) -
A Lightweight Deep Network for Defect Detection of Insert Molding Based on X-ray Imaging
por: Wang, Benwu, et al.
Publicado: (2021)