Cargando…
A deep learning approach to predict collateral flow in stroke patients using radiomic features from perfusion images
Collateral circulation results from specialized anastomotic channels which are capable of providing oxygenated blood to regions with compromised blood flow caused by arterial obstruction. The quality of collateral circulation has been established as a key factor in determining the likelihood of a fa...
Autores principales: | Tetteh, Giles, Navarro, Fernando, Meier, Raphael, Kaesmacher, Johannes, Paetzold, Johannes C., Kirschke, Jan S., Zimmer, Claus, Wiest, Roland, Menze, Bjoern H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990868/ https://www.ncbi.nlm.nih.gov/pubmed/36895903 http://dx.doi.org/10.3389/fneur.2023.1039693 |
Ejemplares similares
-
Quantitative assessment of collateral time on perfusion computed tomography in acute ischemic stroke patients
por: Xu, Yao, et al.
Publicado: (2023) -
BraTS Toolkit: Translating BraTS Brain Tumor Segmentation Algorithms Into Clinical and Scientific Practice
por: Kofler, Florian, et al.
Publicado: (2020) -
Association of Systolic Blood Pressure and Cerebral Collateral Flow in Acute Ischemic Stroke by Stroke Subtype
por: Sim, Jae Eun, et al.
Publicado: (2022) -
Editorial: Hemostasis and Stroke
por: Bagoly, Zsuzsa, et al.
Publicado: (2021) -
A Machine Learning Approach to Perfusion Imaging With Dynamic Susceptibility Contrast MR
por: McKinley, Richard, et al.
Publicado: (2018)