Cargando…
Deep learning enabled multi-organ segmentation of mouse embryos
The International Mouse Phenotyping Consortium (IMPC) has generated a large repository of three-dimensional (3D) imaging data from mouse embryos, providing a rich resource for investigating phenotype/genotype interactions. While the data is freely available, the computing resources and human effort...
Autores principales: | Rolfe, S. M., Whikehart, S. M., Maga, A. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990908/ https://www.ncbi.nlm.nih.gov/pubmed/36802342 http://dx.doi.org/10.1242/bio.059698 |
Ejemplares similares
-
Deep learning-enabled multi-organ segmentation in whole-body mouse scans
por: Schoppe, Oliver, et al.
Publicado: (2020) -
Multi-Organ Gland Segmentation Using Deep Learning
por: Binder, Thomas, et al.
Publicado: (2019) -
Deep learning-enabled segmentation of ambiguous bioimages with deepflash2
por: Griebel, Matthias, et al.
Publicado: (2023) -
Computational anatomy and geometric shape analysis enables analysis of complex craniofacial phenotypes in zebrafish
por: Diamond, Kelly M., et al.
Publicado: (2022) -
Deep learning multi-organ segmentation for whole mouse cryo-images including a comparison of 2D and 3D deep networks
por: Liu, Yiqiao, et al.
Publicado: (2022)