Cargando…
Explaining the physics of transfer learning in data-driven turbulence modeling
Transfer learning (TL), which enables neural networks (NNs) to generalize out-of-distribution via targeted re-training, is becoming a powerful tool in scientific machine learning (ML) applications such as weather/climate prediction and turbulence modeling. Effective TL requires knowing (1) how to re...
Autores principales: | Subel, Adam, Guan, Yifei, Chattopadhyay, Ashesh, Hassanzadeh, Pedram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991455/ https://www.ncbi.nlm.nih.gov/pubmed/36896127 http://dx.doi.org/10.1093/pnasnexus/pgad015 |
Ejemplares similares
Ejemplares similares
-
Analog Forecasting of Extreme‐Causing Weather Patterns Using Deep Learning
por: Chattopadhyay, Ashesh, et al.
Publicado: (2020) -
Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data
por: Chattopadhyay, Ashesh, et al.
Publicado: (2020) -
Radiative heat transfer in turbulent combustion systems: theory and applications
por: Modest, Michael F, et al.
Publicado: (2016) -
Reconnection-driven energy cascade in magnetohydrodynamic turbulence
por: Dong, Chuanfei, et al.
Publicado: (2022) -
Approximate solution for transient heat transfer in static turbulent He-II
por: Baudouy, B
Publicado: (1999)