Cargando…
Mega-scale Bayesian regression methods for genome-wide prediction and association studies with thousands of traits
Large-scale phenotype data are expected to increase the accuracy of genome-wide prediction and the power of genome-wide association analyses. However, genomic analyses of high-dimensional, highly correlated traits are challenging. We developed a method for implementing high-dimensional Bayesian mult...
Autores principales: | Qu, Jiayi, Runcie, Daniel, Cheng, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991502/ https://www.ncbi.nlm.nih.gov/pubmed/36529897 http://dx.doi.org/10.1093/genetics/iyac183 |
Ejemplares similares
-
MegaLMM: Mega-scale linear mixed models for genomic predictions with thousands of traits
por: Runcie, Daniel E., et al.
Publicado: (2021) -
Benchmarking Relatedness Inference Methods with Genome-Wide Data from Thousands of Relatives
por: Ramstetter, Monica D., et al.
Publicado: (2017) -
Genotype Imputation with Thousands of Genomes
por: Howie, Bryan, et al.
Publicado: (2011) -
Pitfalls and Remedies for Cross Validation with Multi-trait Genomic Prediction Methods
por: Runcie, Daniel, et al.
Publicado: (2019) -
Dissecting High-Dimensional Phenotypes with Bayesian Sparse Factor Analysis of Genetic Covariance Matrices
por: Runcie, Daniel E., et al.
Publicado: (2013)