Cargando…

Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study

BACKGROUND: Patients with precursors to multiple myeloma are dichotomised as having monoclonal gammopathy of undetermined significance or smouldering multiple myeloma on the basis of monoclonal protein concentrations or bone marrow plasma cell percentage. Current risk stratifications use laboratory...

Descripción completa

Detalles Bibliográficos
Autores principales: Cowan, Annie, Ferrari, Federico, Freeman, Samuel S, Redd, Robert, El-Khoury, Habib, Perry, Jacqueline, Patel, Vidhi, Kaur, Priya, Barr, Hadley, Lee, David J, Lightbody, Elizabeth, Downey, Katelyn, Argyelan, David, Theodorakakou, Foteini, Fotiou, Despina, Liacos, Christine Ivy, Kanellias, Nikolaos, Chavda, Selina J, Ainley, Louise, Sandecká, Viera, Pospíšilová, Lenka, Minarik, Jiri, Jungova, Alexandra, Radocha, Jakub, Spicka, Ivan, Nadeem, Omar, Yong, Kwee, Hájek, Roman, Kastritis, Efstathios, Marinac, Catherine R, Dimopoulos, Meletios A, Get, Gad, Trippa, Lorenzo, Ghobrial, Irene M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991855/
https://www.ncbi.nlm.nih.gov/pubmed/36858677
http://dx.doi.org/10.1016/S2352-3026(22)00386-6
_version_ 1784902244498407424
author Cowan, Annie
Ferrari, Federico
Freeman, Samuel S
Redd, Robert
El-Khoury, Habib
Perry, Jacqueline
Patel, Vidhi
Kaur, Priya
Barr, Hadley
Lee, David J
Lightbody, Elizabeth
Downey, Katelyn
Argyelan, David
Theodorakakou, Foteini
Fotiou, Despina
Liacos, Christine Ivy
Kanellias, Nikolaos
Chavda, Selina J
Ainley, Louise
Sandecká, Viera
Pospíšilová, Lenka
Minarik, Jiri
Jungova, Alexandra
Radocha, Jakub
Spicka, Ivan
Nadeem, Omar
Yong, Kwee
Hájek, Roman
Kastritis, Efstathios
Marinac, Catherine R
Dimopoulos, Meletios A
Get, Gad
Trippa, Lorenzo
Ghobrial, Irene M
author_facet Cowan, Annie
Ferrari, Federico
Freeman, Samuel S
Redd, Robert
El-Khoury, Habib
Perry, Jacqueline
Patel, Vidhi
Kaur, Priya
Barr, Hadley
Lee, David J
Lightbody, Elizabeth
Downey, Katelyn
Argyelan, David
Theodorakakou, Foteini
Fotiou, Despina
Liacos, Christine Ivy
Kanellias, Nikolaos
Chavda, Selina J
Ainley, Louise
Sandecká, Viera
Pospíšilová, Lenka
Minarik, Jiri
Jungova, Alexandra
Radocha, Jakub
Spicka, Ivan
Nadeem, Omar
Yong, Kwee
Hájek, Roman
Kastritis, Efstathios
Marinac, Catherine R
Dimopoulos, Meletios A
Get, Gad
Trippa, Lorenzo
Ghobrial, Irene M
author_sort Cowan, Annie
collection PubMed
description BACKGROUND: Patients with precursors to multiple myeloma are dichotomised as having monoclonal gammopathy of undetermined significance or smouldering multiple myeloma on the basis of monoclonal protein concentrations or bone marrow plasma cell percentage. Current risk stratifications use laboratory measurements at diagnosis and do not incorporate time-varying biomarkers. Our goal was to develop a monoclonal gammopathy of undetermined significance and smouldering multiple myeloma stratification algorithm that utilised accessible, time-varying biomarkers to model risk of progression to multiple myeloma. METHODS: In this retrospective, multicohort study, we included patients who were 18 years or older with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma. We evaluated several modelling approaches for predicting disease progression to multiple myeloma using a training cohort (with patients at Dana-Farber Cancer Institute, Boston, MA, USA; annotated from Nov, 13, 2019, to April, 13, 2022). We created the PANGEA models, which used data on biomarkers (monoclonal protein concentration, free light chain ratio, age, creatinine concentration, and bone marrow plasma cell percentage) and haemoglobin trajectories from medical records to predict progression from precursor disease to multiple myeloma. The models were validated in two independent validation cohorts from National and Kapodistrian University of Athens (Athens, Greece; from Jan 26, 2020, to Feb 7, 2022; validation cohort 1), University College London (London, UK; from June 9, 2020, to April 10, 2022; validation cohort 1), and Registry of Monoclonal Gammopathies (Czech Republic, Czech Republic; Jan 5, 2004, to March 10, 2022; validation cohort 2). We compared the PANGEA models (with bone marrow [BM] data and without bone marrow [no BM] data) to current criteria (International Myeloma Working Group [IMWG] monoclonal gammopathy of undetermined significance and 20/2/20 smouldering multiple myeloma risk criteria). FINDINGS: We included 6441 patients, 4931 (77%) with monoclonal gammopathy of undetermined significance and 1510 (23%) with smouldering multiple myeloma. 3430 (53%) of 6441 participants were female. The PANGEA model (BM) improved prediction of progression from smouldering multiple myeloma to multiple myeloma compared with the 20/2/20 model, with a C-statistic increase from 0·533 (0·480–0·709) to 0·756 (0·629–0·785) at patient visit 1 to the clinic, 0·613 (0·504–0·704) to 0·720 (0·592–0·775) at visit 2, and 0·637 (0·386–0·841) to 0·756 (0·547–0·830) at visit three in validation cohort 1. The PANGEA model (no BM) improved prediction of smouldering multiple myeloma progression to multiple myeloma compared with the 20/2/20 model with a C-statistic increase from 0·534 (0·501–0·672) to 0·692 (0·614–0·736) at visit 1, 0·573 (0·518–0·647) to 0·693 (0·605–0·734) at visit 2, and 0·560 (0·497–0·645) to 0·692 (0·570–0·708) at visit 3 in validation cohort 1. The PANGEA models improved prediction of monoclonal gammopathy of undetermined significance progression to multiple myeloma compared with the IMWG rolling model at visit 1 in validation cohort 2, with C-statistics increases from 0·640 (0·518–0·718) to 0·729 (0·643–0·941) for the PANGEA model (BM) and 0·670 (0·523–0·729) to 0·879 (0·586–0·938) for the PANGEA model (no BM). INTERPRETATION: Use of the PANGEA models in clinical practice will allow patients with precursor disease to receive more accurate measures of their risk of progression to multiple myeloma, thus prompting for more appropriate treatment strategies. FUNDING: SU2C Dream Team and Cancer Research UK.
format Online
Article
Text
id pubmed-9991855
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier Ltd
record_format MEDLINE/PubMed
spelling pubmed-99918552023-03-08 Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study Cowan, Annie Ferrari, Federico Freeman, Samuel S Redd, Robert El-Khoury, Habib Perry, Jacqueline Patel, Vidhi Kaur, Priya Barr, Hadley Lee, David J Lightbody, Elizabeth Downey, Katelyn Argyelan, David Theodorakakou, Foteini Fotiou, Despina Liacos, Christine Ivy Kanellias, Nikolaos Chavda, Selina J Ainley, Louise Sandecká, Viera Pospíšilová, Lenka Minarik, Jiri Jungova, Alexandra Radocha, Jakub Spicka, Ivan Nadeem, Omar Yong, Kwee Hájek, Roman Kastritis, Efstathios Marinac, Catherine R Dimopoulos, Meletios A Get, Gad Trippa, Lorenzo Ghobrial, Irene M Lancet Haematol Articles BACKGROUND: Patients with precursors to multiple myeloma are dichotomised as having monoclonal gammopathy of undetermined significance or smouldering multiple myeloma on the basis of monoclonal protein concentrations or bone marrow plasma cell percentage. Current risk stratifications use laboratory measurements at diagnosis and do not incorporate time-varying biomarkers. Our goal was to develop a monoclonal gammopathy of undetermined significance and smouldering multiple myeloma stratification algorithm that utilised accessible, time-varying biomarkers to model risk of progression to multiple myeloma. METHODS: In this retrospective, multicohort study, we included patients who were 18 years or older with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma. We evaluated several modelling approaches for predicting disease progression to multiple myeloma using a training cohort (with patients at Dana-Farber Cancer Institute, Boston, MA, USA; annotated from Nov, 13, 2019, to April, 13, 2022). We created the PANGEA models, which used data on biomarkers (monoclonal protein concentration, free light chain ratio, age, creatinine concentration, and bone marrow plasma cell percentage) and haemoglobin trajectories from medical records to predict progression from precursor disease to multiple myeloma. The models were validated in two independent validation cohorts from National and Kapodistrian University of Athens (Athens, Greece; from Jan 26, 2020, to Feb 7, 2022; validation cohort 1), University College London (London, UK; from June 9, 2020, to April 10, 2022; validation cohort 1), and Registry of Monoclonal Gammopathies (Czech Republic, Czech Republic; Jan 5, 2004, to March 10, 2022; validation cohort 2). We compared the PANGEA models (with bone marrow [BM] data and without bone marrow [no BM] data) to current criteria (International Myeloma Working Group [IMWG] monoclonal gammopathy of undetermined significance and 20/2/20 smouldering multiple myeloma risk criteria). FINDINGS: We included 6441 patients, 4931 (77%) with monoclonal gammopathy of undetermined significance and 1510 (23%) with smouldering multiple myeloma. 3430 (53%) of 6441 participants were female. The PANGEA model (BM) improved prediction of progression from smouldering multiple myeloma to multiple myeloma compared with the 20/2/20 model, with a C-statistic increase from 0·533 (0·480–0·709) to 0·756 (0·629–0·785) at patient visit 1 to the clinic, 0·613 (0·504–0·704) to 0·720 (0·592–0·775) at visit 2, and 0·637 (0·386–0·841) to 0·756 (0·547–0·830) at visit three in validation cohort 1. The PANGEA model (no BM) improved prediction of smouldering multiple myeloma progression to multiple myeloma compared with the 20/2/20 model with a C-statistic increase from 0·534 (0·501–0·672) to 0·692 (0·614–0·736) at visit 1, 0·573 (0·518–0·647) to 0·693 (0·605–0·734) at visit 2, and 0·560 (0·497–0·645) to 0·692 (0·570–0·708) at visit 3 in validation cohort 1. The PANGEA models improved prediction of monoclonal gammopathy of undetermined significance progression to multiple myeloma compared with the IMWG rolling model at visit 1 in validation cohort 2, with C-statistics increases from 0·640 (0·518–0·718) to 0·729 (0·643–0·941) for the PANGEA model (BM) and 0·670 (0·523–0·729) to 0·879 (0·586–0·938) for the PANGEA model (no BM). INTERPRETATION: Use of the PANGEA models in clinical practice will allow patients with precursor disease to receive more accurate measures of their risk of progression to multiple myeloma, thus prompting for more appropriate treatment strategies. FUNDING: SU2C Dream Team and Cancer Research UK. Elsevier Ltd 2023-02-27 /pmc/articles/PMC9991855/ /pubmed/36858677 http://dx.doi.org/10.1016/S2352-3026(22)00386-6 Text en © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Articles
Cowan, Annie
Ferrari, Federico
Freeman, Samuel S
Redd, Robert
El-Khoury, Habib
Perry, Jacqueline
Patel, Vidhi
Kaur, Priya
Barr, Hadley
Lee, David J
Lightbody, Elizabeth
Downey, Katelyn
Argyelan, David
Theodorakakou, Foteini
Fotiou, Despina
Liacos, Christine Ivy
Kanellias, Nikolaos
Chavda, Selina J
Ainley, Louise
Sandecká, Viera
Pospíšilová, Lenka
Minarik, Jiri
Jungova, Alexandra
Radocha, Jakub
Spicka, Ivan
Nadeem, Omar
Yong, Kwee
Hájek, Roman
Kastritis, Efstathios
Marinac, Catherine R
Dimopoulos, Meletios A
Get, Gad
Trippa, Lorenzo
Ghobrial, Irene M
Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study
title Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study
title_full Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study
title_fullStr Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study
title_full_unstemmed Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study
title_short Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study
title_sort personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (pangea): a retrospective, multicohort study
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991855/
https://www.ncbi.nlm.nih.gov/pubmed/36858677
http://dx.doi.org/10.1016/S2352-3026(22)00386-6
work_keys_str_mv AT cowanannie personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT ferrarifederico personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT freemansamuels personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT reddrobert personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT elkhouryhabib personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT perryjacqueline personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT patelvidhi personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT kaurpriya personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT barrhadley personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT leedavidj personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT lightbodyelizabeth personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT downeykatelyn personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT argyelandavid personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT theodorakakoufoteini personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT fotioudespina personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT liacoschristineivy personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT kanelliasnikolaos personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT chavdaselinaj personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT ainleylouise personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT sandeckaviera personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT pospisilovalenka personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT minarikjiri personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT jungovaalexandra personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT radochajakub personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT spickaivan personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT nadeemomar personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT yongkwee personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT hajekroman personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT kastritisefstathios personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT marinaccatheriner personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT dimopoulosmeletiosa personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT getgad personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT trippalorenzo personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy
AT ghobrialirenem personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy