Cargando…
Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study
BACKGROUND: Patients with precursors to multiple myeloma are dichotomised as having monoclonal gammopathy of undetermined significance or smouldering multiple myeloma on the basis of monoclonal protein concentrations or bone marrow plasma cell percentage. Current risk stratifications use laboratory...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991855/ https://www.ncbi.nlm.nih.gov/pubmed/36858677 http://dx.doi.org/10.1016/S2352-3026(22)00386-6 |
_version_ | 1784902244498407424 |
---|---|
author | Cowan, Annie Ferrari, Federico Freeman, Samuel S Redd, Robert El-Khoury, Habib Perry, Jacqueline Patel, Vidhi Kaur, Priya Barr, Hadley Lee, David J Lightbody, Elizabeth Downey, Katelyn Argyelan, David Theodorakakou, Foteini Fotiou, Despina Liacos, Christine Ivy Kanellias, Nikolaos Chavda, Selina J Ainley, Louise Sandecká, Viera Pospíšilová, Lenka Minarik, Jiri Jungova, Alexandra Radocha, Jakub Spicka, Ivan Nadeem, Omar Yong, Kwee Hájek, Roman Kastritis, Efstathios Marinac, Catherine R Dimopoulos, Meletios A Get, Gad Trippa, Lorenzo Ghobrial, Irene M |
author_facet | Cowan, Annie Ferrari, Federico Freeman, Samuel S Redd, Robert El-Khoury, Habib Perry, Jacqueline Patel, Vidhi Kaur, Priya Barr, Hadley Lee, David J Lightbody, Elizabeth Downey, Katelyn Argyelan, David Theodorakakou, Foteini Fotiou, Despina Liacos, Christine Ivy Kanellias, Nikolaos Chavda, Selina J Ainley, Louise Sandecká, Viera Pospíšilová, Lenka Minarik, Jiri Jungova, Alexandra Radocha, Jakub Spicka, Ivan Nadeem, Omar Yong, Kwee Hájek, Roman Kastritis, Efstathios Marinac, Catherine R Dimopoulos, Meletios A Get, Gad Trippa, Lorenzo Ghobrial, Irene M |
author_sort | Cowan, Annie |
collection | PubMed |
description | BACKGROUND: Patients with precursors to multiple myeloma are dichotomised as having monoclonal gammopathy of undetermined significance or smouldering multiple myeloma on the basis of monoclonal protein concentrations or bone marrow plasma cell percentage. Current risk stratifications use laboratory measurements at diagnosis and do not incorporate time-varying biomarkers. Our goal was to develop a monoclonal gammopathy of undetermined significance and smouldering multiple myeloma stratification algorithm that utilised accessible, time-varying biomarkers to model risk of progression to multiple myeloma. METHODS: In this retrospective, multicohort study, we included patients who were 18 years or older with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma. We evaluated several modelling approaches for predicting disease progression to multiple myeloma using a training cohort (with patients at Dana-Farber Cancer Institute, Boston, MA, USA; annotated from Nov, 13, 2019, to April, 13, 2022). We created the PANGEA models, which used data on biomarkers (monoclonal protein concentration, free light chain ratio, age, creatinine concentration, and bone marrow plasma cell percentage) and haemoglobin trajectories from medical records to predict progression from precursor disease to multiple myeloma. The models were validated in two independent validation cohorts from National and Kapodistrian University of Athens (Athens, Greece; from Jan 26, 2020, to Feb 7, 2022; validation cohort 1), University College London (London, UK; from June 9, 2020, to April 10, 2022; validation cohort 1), and Registry of Monoclonal Gammopathies (Czech Republic, Czech Republic; Jan 5, 2004, to March 10, 2022; validation cohort 2). We compared the PANGEA models (with bone marrow [BM] data and without bone marrow [no BM] data) to current criteria (International Myeloma Working Group [IMWG] monoclonal gammopathy of undetermined significance and 20/2/20 smouldering multiple myeloma risk criteria). FINDINGS: We included 6441 patients, 4931 (77%) with monoclonal gammopathy of undetermined significance and 1510 (23%) with smouldering multiple myeloma. 3430 (53%) of 6441 participants were female. The PANGEA model (BM) improved prediction of progression from smouldering multiple myeloma to multiple myeloma compared with the 20/2/20 model, with a C-statistic increase from 0·533 (0·480–0·709) to 0·756 (0·629–0·785) at patient visit 1 to the clinic, 0·613 (0·504–0·704) to 0·720 (0·592–0·775) at visit 2, and 0·637 (0·386–0·841) to 0·756 (0·547–0·830) at visit three in validation cohort 1. The PANGEA model (no BM) improved prediction of smouldering multiple myeloma progression to multiple myeloma compared with the 20/2/20 model with a C-statistic increase from 0·534 (0·501–0·672) to 0·692 (0·614–0·736) at visit 1, 0·573 (0·518–0·647) to 0·693 (0·605–0·734) at visit 2, and 0·560 (0·497–0·645) to 0·692 (0·570–0·708) at visit 3 in validation cohort 1. The PANGEA models improved prediction of monoclonal gammopathy of undetermined significance progression to multiple myeloma compared with the IMWG rolling model at visit 1 in validation cohort 2, with C-statistics increases from 0·640 (0·518–0·718) to 0·729 (0·643–0·941) for the PANGEA model (BM) and 0·670 (0·523–0·729) to 0·879 (0·586–0·938) for the PANGEA model (no BM). INTERPRETATION: Use of the PANGEA models in clinical practice will allow patients with precursor disease to receive more accurate measures of their risk of progression to multiple myeloma, thus prompting for more appropriate treatment strategies. FUNDING: SU2C Dream Team and Cancer Research UK. |
format | Online Article Text |
id | pubmed-9991855 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-99918552023-03-08 Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study Cowan, Annie Ferrari, Federico Freeman, Samuel S Redd, Robert El-Khoury, Habib Perry, Jacqueline Patel, Vidhi Kaur, Priya Barr, Hadley Lee, David J Lightbody, Elizabeth Downey, Katelyn Argyelan, David Theodorakakou, Foteini Fotiou, Despina Liacos, Christine Ivy Kanellias, Nikolaos Chavda, Selina J Ainley, Louise Sandecká, Viera Pospíšilová, Lenka Minarik, Jiri Jungova, Alexandra Radocha, Jakub Spicka, Ivan Nadeem, Omar Yong, Kwee Hájek, Roman Kastritis, Efstathios Marinac, Catherine R Dimopoulos, Meletios A Get, Gad Trippa, Lorenzo Ghobrial, Irene M Lancet Haematol Articles BACKGROUND: Patients with precursors to multiple myeloma are dichotomised as having monoclonal gammopathy of undetermined significance or smouldering multiple myeloma on the basis of monoclonal protein concentrations or bone marrow plasma cell percentage. Current risk stratifications use laboratory measurements at diagnosis and do not incorporate time-varying biomarkers. Our goal was to develop a monoclonal gammopathy of undetermined significance and smouldering multiple myeloma stratification algorithm that utilised accessible, time-varying biomarkers to model risk of progression to multiple myeloma. METHODS: In this retrospective, multicohort study, we included patients who were 18 years or older with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma. We evaluated several modelling approaches for predicting disease progression to multiple myeloma using a training cohort (with patients at Dana-Farber Cancer Institute, Boston, MA, USA; annotated from Nov, 13, 2019, to April, 13, 2022). We created the PANGEA models, which used data on biomarkers (monoclonal protein concentration, free light chain ratio, age, creatinine concentration, and bone marrow plasma cell percentage) and haemoglobin trajectories from medical records to predict progression from precursor disease to multiple myeloma. The models were validated in two independent validation cohorts from National and Kapodistrian University of Athens (Athens, Greece; from Jan 26, 2020, to Feb 7, 2022; validation cohort 1), University College London (London, UK; from June 9, 2020, to April 10, 2022; validation cohort 1), and Registry of Monoclonal Gammopathies (Czech Republic, Czech Republic; Jan 5, 2004, to March 10, 2022; validation cohort 2). We compared the PANGEA models (with bone marrow [BM] data and without bone marrow [no BM] data) to current criteria (International Myeloma Working Group [IMWG] monoclonal gammopathy of undetermined significance and 20/2/20 smouldering multiple myeloma risk criteria). FINDINGS: We included 6441 patients, 4931 (77%) with monoclonal gammopathy of undetermined significance and 1510 (23%) with smouldering multiple myeloma. 3430 (53%) of 6441 participants were female. The PANGEA model (BM) improved prediction of progression from smouldering multiple myeloma to multiple myeloma compared with the 20/2/20 model, with a C-statistic increase from 0·533 (0·480–0·709) to 0·756 (0·629–0·785) at patient visit 1 to the clinic, 0·613 (0·504–0·704) to 0·720 (0·592–0·775) at visit 2, and 0·637 (0·386–0·841) to 0·756 (0·547–0·830) at visit three in validation cohort 1. The PANGEA model (no BM) improved prediction of smouldering multiple myeloma progression to multiple myeloma compared with the 20/2/20 model with a C-statistic increase from 0·534 (0·501–0·672) to 0·692 (0·614–0·736) at visit 1, 0·573 (0·518–0·647) to 0·693 (0·605–0·734) at visit 2, and 0·560 (0·497–0·645) to 0·692 (0·570–0·708) at visit 3 in validation cohort 1. The PANGEA models improved prediction of monoclonal gammopathy of undetermined significance progression to multiple myeloma compared with the IMWG rolling model at visit 1 in validation cohort 2, with C-statistics increases from 0·640 (0·518–0·718) to 0·729 (0·643–0·941) for the PANGEA model (BM) and 0·670 (0·523–0·729) to 0·879 (0·586–0·938) for the PANGEA model (no BM). INTERPRETATION: Use of the PANGEA models in clinical practice will allow patients with precursor disease to receive more accurate measures of their risk of progression to multiple myeloma, thus prompting for more appropriate treatment strategies. FUNDING: SU2C Dream Team and Cancer Research UK. Elsevier Ltd 2023-02-27 /pmc/articles/PMC9991855/ /pubmed/36858677 http://dx.doi.org/10.1016/S2352-3026(22)00386-6 Text en © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Articles Cowan, Annie Ferrari, Federico Freeman, Samuel S Redd, Robert El-Khoury, Habib Perry, Jacqueline Patel, Vidhi Kaur, Priya Barr, Hadley Lee, David J Lightbody, Elizabeth Downey, Katelyn Argyelan, David Theodorakakou, Foteini Fotiou, Despina Liacos, Christine Ivy Kanellias, Nikolaos Chavda, Selina J Ainley, Louise Sandecká, Viera Pospíšilová, Lenka Minarik, Jiri Jungova, Alexandra Radocha, Jakub Spicka, Ivan Nadeem, Omar Yong, Kwee Hájek, Roman Kastritis, Efstathios Marinac, Catherine R Dimopoulos, Meletios A Get, Gad Trippa, Lorenzo Ghobrial, Irene M Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study |
title | Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study |
title_full | Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study |
title_fullStr | Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study |
title_full_unstemmed | Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study |
title_short | Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study |
title_sort | personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (pangea): a retrospective, multicohort study |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991855/ https://www.ncbi.nlm.nih.gov/pubmed/36858677 http://dx.doi.org/10.1016/S2352-3026(22)00386-6 |
work_keys_str_mv | AT cowanannie personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT ferrarifederico personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT freemansamuels personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT reddrobert personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT elkhouryhabib personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT perryjacqueline personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT patelvidhi personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT kaurpriya personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT barrhadley personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT leedavidj personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT lightbodyelizabeth personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT downeykatelyn personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT argyelandavid personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT theodorakakoufoteini personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT fotioudespina personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT liacoschristineivy personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT kanelliasnikolaos personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT chavdaselinaj personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT ainleylouise personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT sandeckaviera personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT pospisilovalenka personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT minarikjiri personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT jungovaalexandra personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT radochajakub personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT spickaivan personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT nadeemomar personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT yongkwee personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT hajekroman personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT kastritisefstathios personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT marinaccatheriner personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT dimopoulosmeletiosa personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT getgad personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT trippalorenzo personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy AT ghobrialirenem personalisedprogressionpredictioninpatientswithmonoclonalgammopathyofundeterminedsignificanceorsmoulderingmultiplemyelomapangeaaretrospectivemulticohortstudy |