Cargando…
Machine learning models for 180-day mortality prediction of patients with advanced cancer using patient-reported symptom data
PURPOSE: The objective of the current study was to develop and test the performances of different ML algorithms which were trained using patient-reported symptom severity data to predict mortality within 180 days for patients with advanced cancer. METHODS: We randomly selected 630 of 689 patients wi...
Autores principales: | Xu, Cai, Subbiah, Ishwaria M., Lu, Sheng-Chieh, Pfob, André, Sidey-Gibbons, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992030/ https://www.ncbi.nlm.nih.gov/pubmed/36308591 http://dx.doi.org/10.1007/s11136-022-03284-y |
Ejemplares similares
-
Predicting 180-day mortality for women with ovarian cancer using machine learning and patient-reported outcome data
por: Sidey-Gibbons, Chris J., et al.
Publicado: (2022) -
Machine learning in medicine: a practical introduction to techniques for data pre-processing, hyperparameter tuning, and model comparison
por: Pfob, André, et al.
Publicado: (2022) -
Machine Learning–Based Short-Term Mortality Prediction Models for Patients With Cancer Using Electronic Health Record Data: Systematic Review and Critical Appraisal
por: Lu, Sheng-Chieh, et al.
Publicado: (2022) -
ASO Author Reflections: Enhancing Surgical Decision-Making for Breast Reconstruction—Machine Learning-Driven Prediction of Postoperative Quality of Life
por: Xu, Cai, et al.
Publicado: (2023) -
Towards Patient-centered Decision-making in Breast Cancer Surgery: Machine Learning to Predict Individual Patient-reported Outcomes at 1-year Follow-up
por: Pfob, André, et al.
Publicado: (2023)