Cargando…
Applications of generative adversarial networks in neuroimaging and clinical neuroscience
Generative adversarial networks (GANs) are one powerful type of deep learning models that have been successfully utilized in numerous fields. They belong to the broader family of generative methods, which learn to generate realistic data with a probabilistic model by learning distributions from real...
Autores principales: | Wang, Rongguang, Bashyam, Vishnu, Yang, Zhijian, Yu, Fanyang, Tassopoulou, Vasiliki, Chintapalli, Sai Spandana, Skampardoni, Ioanna, Sreepada, Lasya P., Sahoo, Dushyant, Nikita, Konstantina, Abdulkadir, Ahmed, Wen, Junhao, Davatzikos, Christos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992336/ https://www.ncbi.nlm.nih.gov/pubmed/36702211 http://dx.doi.org/10.1016/j.neuroimage.2023.119898 |
Ejemplares similares
-
Neuroimaging-AI Endophenotypes of Brain Diseases in the General Population: Towards a Dimensional System of Vulnerability
por: Wen, Junhao, et al.
Publicado: (2023) -
The Genetic Architecture of Biological Age in Nine Human Organ Systems
por: Wen, Junhao, et al.
Publicado: (2023) -
Bias in machine learning models can be significantly mitigated by careful training: Evidence from neuroimaging studies
por: Wang, Rongguang, et al.
Publicado: (2023) -
Basic Emotions in Human Neuroscience: Neuroimaging and Beyond
por: Celeghin, Alessia, et al.
Publicado: (2017) -
Semi-supervised Learning Approach to Generate Neuroimaging Modalities with Adversarial Training
por: Nguyen, Harrison, et al.
Publicado: (2020)