Cargando…

Well-TEMP-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics

Single-cell RNA sequencing (scRNA-seq) reveals the transcriptional heterogeneity of cells, but the static snapshots fail to reveal the time-resolved dynamics of transcription. Herein, we develop Well-TEMP-seq, a high-throughput, cost-effective, accurate, and efficient method for massively parallel p...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Shichao, Yin, Kun, Zhang, Yingkun, Lin, Fanghe, Chen, Xiaoyong, Zeng, Xi, Guo, Xiaoxu, Zhang, Huimin, Song, Jia, Yang, Chaoyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992361/
https://www.ncbi.nlm.nih.gov/pubmed/36882403
http://dx.doi.org/10.1038/s41467-023-36902-5
_version_ 1784902294861512704
author Lin, Shichao
Yin, Kun
Zhang, Yingkun
Lin, Fanghe
Chen, Xiaoyong
Zeng, Xi
Guo, Xiaoxu
Zhang, Huimin
Song, Jia
Yang, Chaoyong
author_facet Lin, Shichao
Yin, Kun
Zhang, Yingkun
Lin, Fanghe
Chen, Xiaoyong
Zeng, Xi
Guo, Xiaoxu
Zhang, Huimin
Song, Jia
Yang, Chaoyong
author_sort Lin, Shichao
collection PubMed
description Single-cell RNA sequencing (scRNA-seq) reveals the transcriptional heterogeneity of cells, but the static snapshots fail to reveal the time-resolved dynamics of transcription. Herein, we develop Well-TEMP-seq, a high-throughput, cost-effective, accurate, and efficient method for massively parallel profiling the temporal dynamics of single-cell gene expression. Well-TEMP-seq combines metabolic RNA labeling with scRNA-seq method Well-paired-seq to distinguish newly transcribed RNAs marked by T-to-C substitutions from pre-existing RNAs in each of thousands of single cells. The Well-paired-seq chip ensures a high single cell/barcoded bead pairing rate (~80%) and the improved alkylation chemistry on beads greatly alleviates chemical conversion-induced cell loss (~67.5% recovery). We further apply Well-TEMP-seq to profile the transcriptional dynamics of colorectal cancer cells exposed to 5-AZA-CdR, a DNA-demethylating drug. Well-TEMP-seq unbiasedly captures the RNA dynamics and outperforms the splicing-based RNA velocity method. We anticipate that Well-TEMP-seq will be broadly applicable to unveil the dynamics of single-cell gene expression in diverse biological processes.
format Online
Article
Text
id pubmed-9992361
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-99923612023-03-09 Well-TEMP-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics Lin, Shichao Yin, Kun Zhang, Yingkun Lin, Fanghe Chen, Xiaoyong Zeng, Xi Guo, Xiaoxu Zhang, Huimin Song, Jia Yang, Chaoyong Nat Commun Article Single-cell RNA sequencing (scRNA-seq) reveals the transcriptional heterogeneity of cells, but the static snapshots fail to reveal the time-resolved dynamics of transcription. Herein, we develop Well-TEMP-seq, a high-throughput, cost-effective, accurate, and efficient method for massively parallel profiling the temporal dynamics of single-cell gene expression. Well-TEMP-seq combines metabolic RNA labeling with scRNA-seq method Well-paired-seq to distinguish newly transcribed RNAs marked by T-to-C substitutions from pre-existing RNAs in each of thousands of single cells. The Well-paired-seq chip ensures a high single cell/barcoded bead pairing rate (~80%) and the improved alkylation chemistry on beads greatly alleviates chemical conversion-induced cell loss (~67.5% recovery). We further apply Well-TEMP-seq to profile the transcriptional dynamics of colorectal cancer cells exposed to 5-AZA-CdR, a DNA-demethylating drug. Well-TEMP-seq unbiasedly captures the RNA dynamics and outperforms the splicing-based RNA velocity method. We anticipate that Well-TEMP-seq will be broadly applicable to unveil the dynamics of single-cell gene expression in diverse biological processes. Nature Publishing Group UK 2023-03-07 /pmc/articles/PMC9992361/ /pubmed/36882403 http://dx.doi.org/10.1038/s41467-023-36902-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Lin, Shichao
Yin, Kun
Zhang, Yingkun
Lin, Fanghe
Chen, Xiaoyong
Zeng, Xi
Guo, Xiaoxu
Zhang, Huimin
Song, Jia
Yang, Chaoyong
Well-TEMP-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics
title Well-TEMP-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics
title_full Well-TEMP-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics
title_fullStr Well-TEMP-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics
title_full_unstemmed Well-TEMP-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics
title_short Well-TEMP-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics
title_sort well-temp-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal rna dynamics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992361/
https://www.ncbi.nlm.nih.gov/pubmed/36882403
http://dx.doi.org/10.1038/s41467-023-36902-5
work_keys_str_mv AT linshichao welltempseqasamicrowellbasedstrategyformassivelyparallelprofilingofsinglecelltemporalrnadynamics
AT yinkun welltempseqasamicrowellbasedstrategyformassivelyparallelprofilingofsinglecelltemporalrnadynamics
AT zhangyingkun welltempseqasamicrowellbasedstrategyformassivelyparallelprofilingofsinglecelltemporalrnadynamics
AT linfanghe welltempseqasamicrowellbasedstrategyformassivelyparallelprofilingofsinglecelltemporalrnadynamics
AT chenxiaoyong welltempseqasamicrowellbasedstrategyformassivelyparallelprofilingofsinglecelltemporalrnadynamics
AT zengxi welltempseqasamicrowellbasedstrategyformassivelyparallelprofilingofsinglecelltemporalrnadynamics
AT guoxiaoxu welltempseqasamicrowellbasedstrategyformassivelyparallelprofilingofsinglecelltemporalrnadynamics
AT zhanghuimin welltempseqasamicrowellbasedstrategyformassivelyparallelprofilingofsinglecelltemporalrnadynamics
AT songjia welltempseqasamicrowellbasedstrategyformassivelyparallelprofilingofsinglecelltemporalrnadynamics
AT yangchaoyong welltempseqasamicrowellbasedstrategyformassivelyparallelprofilingofsinglecelltemporalrnadynamics