Cargando…
Explainable machine learning for long-term outcome prediction in two-center stroke patients after intravenous thrombolysis
OBJECTIVE: Neurological outcome prediction in patients with ischemic stroke is very critical in treatment strategy and post-stroke management. Machine learning techniques with high accuracy are increasingly being developed in the medical field. We studied the application of machine learning models t...
Autores principales: | Ping, Zheng, Huiyu, She, Min, Li, Qingke, Bai, Qiuyun, Lu, Xu, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992421/ https://www.ncbi.nlm.nih.gov/pubmed/36908783 http://dx.doi.org/10.3389/fnins.2023.1146197 |
Ejemplares similares
-
Prognostic nomogram for the outcomes in acute stroke patients with intravenous thrombolysis
por: Ping, Zheng, et al.
Publicado: (2022) -
Effectiveness and Predictors of Poor Prognosis Following Intravenous Thrombolysis in Patients with Wake-Up Ischemic Stroke Guided by Rapid MRI
por: Lu, Qiuyun, et al.
Publicado: (2022) -
Clinical comparison of intravenous thrombolysis and bridging artery thrombectomy in hyperacute ischemic stroke with unknown time of onset
por: Qingke, Bai, et al.
Publicado: (2021) -
Malnutrition and Risk of Mortality in Ischemic Stroke Patients Treated With Intravenous Thrombolysis
por: Tang, Haiyan, et al.
Publicado: (2022) -
Intravenous Thrombolysis is Effective in Young Adults: Results from the Baden-Wuerttemberg Stroke Registry
por: Reuter, Björn, et al.
Publicado: (2015)