Cargando…
EHR foundation models improve robustness in the presence of temporal distribution shift
Temporal distribution shift negatively impacts the performance of clinical prediction models over time. Pretraining foundation models using self-supervised learning on electronic health records (EHR) may be effective in acquiring informative global patterns that can improve the robustness of task-sp...
Autores principales: | Guo, Lin Lawrence, Steinberg, Ethan, Fleming, Scott Lanyon, Posada, Jose, Lemmon, Joshua, Pfohl, Stephen R., Shah, Nigam, Fries, Jason, Sung, Lillian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992466/ https://www.ncbi.nlm.nih.gov/pubmed/36882576 http://dx.doi.org/10.1038/s41598-023-30820-8 |
Ejemplares similares
-
Evaluation of domain generalization and adaptation on improving model robustness to temporal dataset shift in clinical medicine
por: Guo, Lin Lawrence, et al.
Publicado: (2022) -
The shaky foundations of large language models and foundation models for electronic health records
por: Wornow, Michael, et al.
Publicado: (2023) -
Ontology-driven weak supervision for clinical entity classification in electronic health records
por: Fries, Jason A., et al.
Publicado: (2020) -
Ontology-driven weak supervision for clinical entity classification in electronic health records
por: Fries, Jason A., et al.
Publicado: (2021) -
Learning decision thresholds for risk stratification models from aggregate clinician behavior
por: Patel, Birju S, et al.
Publicado: (2021)