Cargando…
High sensitivity carbon monoxide detector using iron tetraphenyl porphyrin functionalized reduced graphene oxide
The detection of pollutant and toxic gases has attracted extensive attention due to the growing environmental issues. In the present investigation, free-based tetraphenyl porphyrin (TPP) and iron tetraphenyl porphyrin (FeTPP) are used to functionalize thermally reduced graphene oxide (rGO) and furth...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992485/ https://www.ncbi.nlm.nih.gov/pubmed/36881264 http://dx.doi.org/10.1186/s11671-023-03813-9 |
Sumario: | The detection of pollutant and toxic gases has attracted extensive attention due to the growing environmental issues. In the present investigation, free-based tetraphenyl porphyrin (TPP) and iron tetraphenyl porphyrin (FeTPP) are used to functionalize thermally reduced graphene oxide (rGO) and further used for the detection of carbon monoxide (CO). TPP and FeTPP functionalized rGO (FeTPP@rGO) sensors are fabricated on a glass substrate with thermally coated copper electrodes. The materials are characterized with X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, Raman spectroscopy, UV–visible spectroscopy, atomic force microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The current–voltage (I–V) characteristics have also been studied to demonstrate the operation of the device. In addition, the FeTPP@rGO device shows high sensitivity toward the detection of CO. By testing in the chemiresistive sensing modality, the as-fabricated device shows good response and recovery of 60 s and 120 s, respectively, with a low detection limit of 2.5 ppm. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-023-03813-9. |
---|