Cargando…
Development of a simplified model and nomogram in preoperative diagnosis of pediatric chronic cholangitis with pancreaticobiliary maljunction using clinical variables and MRI radiomics
OBJECTIVE: The aim of this study was to develop a model that combines clinically relevant features with radiomics signature based on magnetic-resonance imaging (MRI) for diagnosis of chronic cholangitis in pancreaticobiliary maljunction (PBM) children. METHODS: A total of 144 subjects from two insti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992494/ https://www.ncbi.nlm.nih.gov/pubmed/36882647 http://dx.doi.org/10.1186/s13244-023-01383-z |
Sumario: | OBJECTIVE: The aim of this study was to develop a model that combines clinically relevant features with radiomics signature based on magnetic-resonance imaging (MRI) for diagnosis of chronic cholangitis in pancreaticobiliary maljunction (PBM) children. METHODS: A total of 144 subjects from two institutions confirmed PBM were included in this study. Clinical characteristics and MRI features were evaluated to build a clinical model. Radiomics features were extracted from the region of interest manually delineated on T2-weighted imaging. A radiomics signature was developed by the selected radiomics features using the least absolute shrinkage and selection operator and then a radiomics score (Rad-score) was calculated. We constructed a combined model incorporating clinical factors and Rad-score by multivariate logistic regression analysis. The combined model was visualized as a radiomics nomogram to achieve model visualization and provide clinical utility. Receiver operating curve analysis and decision curve analysis (DCA) were used to evaluate the diagnostic performance. RESULTS: Jaundice, protein plug, and ascites were selected as key clinical variables. Eight radiomics features were combined to construct the radiomics signature. The combined model showed superior predictive performance compared with the clinical model alone (AUC in the training cohort: 0.891 vs. 0.767, the validation cohort: 0.858 vs. 0.731), and the difference was significant (p = 0.002, 0.028) in the both cohorts. DCA confirmed the clinical utility of the radiomics nomogram. CONCLUSION: The proposed model that combines key clinical variables and radiomics signature is helpful in the diagnosis of chronic cholangitis in PBM children. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13244-023-01383-z. |
---|