Cargando…

Single-nucleus transcriptional profiling uncovers the reprogrammed metabolism of astrocytes in Alzheimer’s disease

Astrocytes play an important role in the pathogenesis of Alzheimer’s disease (AD). It is widely involved in energy metabolism in the brain by providing nutritional and metabolic support to neurons; however, the alteration in the metabolism of astrocytes in AD remains unknown. Through integrative ana...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Li-Yuan, Yang, Jing, Li, Ming-Li, Liu, Ruo-Yu, Kong, Ying, Duan, Su-Ying, Guo, Guang-Yu, Yang, Jing-Hua, Xu, Yu-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992528/
https://www.ncbi.nlm.nih.gov/pubmed/36910261
http://dx.doi.org/10.3389/fnmol.2023.1136398
Descripción
Sumario:Astrocytes play an important role in the pathogenesis of Alzheimer’s disease (AD). It is widely involved in energy metabolism in the brain by providing nutritional and metabolic support to neurons; however, the alteration in the metabolism of astrocytes in AD remains unknown. Through integrative analysis of single-nucleus sequencing datasets, we revealed metabolic changes in various cell types in the prefrontal cortex of patients with AD. We found the depletion of some important metabolites (acetyl-coenzyme A, aspartate, pyruvate, 2-oxoglutarate, glutamine, and others), as well as the inhibition of some metabolic fluxes (glycolysis and tricarbocylic acid cycle, glutamate metabolism) in astrocytes of AD. The abnormality of glutamate metabolism in astrocytes is unique and important. Downregulation of GLUL (GS) and GLUD1 (GDH) may be the cause of glutamate alterations in astrocytes in AD. These results provide a basis for understanding the characteristic changes in astrocytes in AD and provide ideas for the study of AD pathogenesis.