Cargando…
Prolonged air leak after video-assisted thoracic anatomical pulmonary resections: a clinical predicting model based on data from the Italian VATS group registry, a machine learning approach
BACKGROUND: Prolonged air leak (PAL) is a frequent complication after lung resection surgery and has a high clinical and economic impact. A useful risk predictor model can help recognize those patients who might benefit from additional preventive procedures. Currently, no risk model has sufficient d...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992572/ https://www.ncbi.nlm.nih.gov/pubmed/36910097 http://dx.doi.org/10.21037/jtd-21-1484 |
Sumario: | BACKGROUND: Prolonged air leak (PAL) is a frequent complication after lung resection surgery and has a high clinical and economic impact. A useful risk predictor model can help recognize those patients who might benefit from additional preventive procedures. Currently, no risk model has sufficient discriminatory capacity to be used in common clinical practice. The aim of this study is to identify predictive risk factors for PAL after video-assisted thoracoscopic surgery (VATS) anatomical resections in the Italian VATS group database and to evaluate their clinical and statistical performance. METHODS: We processed data collected in the second edition of the Italian VATS group registry. It includes patients that underwent a thoracoscopic anatomical resection for benign or malignant diseases, between November 2015 and December 2020. We used recursive feature elimination (RFE), using a backward selection process, to find the optimal combination of predictors. The study population was randomly split based on the outcome into a derivation (80%) and an internal validation cohort (20%). Discrimination of the model was measured using the area under the curve, or C-statistic. Calibration was displayed using a calibration plot and was measured using Emax and Eavg, the maximum and the average difference in predicted versus loess calibrated probabilities. RESULTS: A cohort of 6,236 patients was eligible for the study after application of the exclusion criteria. Five-day PAL rate in this patient cohort was 11.3%. For the construction of our predictive model, we used both preoperative and intraoperative variables, with a total of 320 variables. The presence of variables with missing values greater than 5% led to 120 remaining predictors. RFE algorithm recommended 8 features for the model that are relevant in predicting the target variable. CONCLUSIONS: We confirmed significant prognostic risk factors for the prediction of PAL: decreased DLCO/VA ratio, longer duration of surgery, male sex, the need for adhesiolysis, COPD, and right side. We identified middle lobe resections and ground glass opacity as protective factors. After internal validation, a C statistic of 0.63 was revealed, which is too low to generate a reliable score in clinical practice. |
---|