Cargando…
Value of contrast-enhanced magnetic resonance imaging-T2WI-based radiomic features in distinguishing lung adenocarcinoma from lung squamous cell carcinoma with solid components >8 mm
BACKGROUND: Radiomics is one of the research frontiers in the field of imaging and has excellent diagnostic performance. However, there is a lack of magnetic resonance imaging (MRI)-based omics studies on identifying pathological subtypes of lung cancer. Here we explored the value of the contrast-en...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992614/ https://www.ncbi.nlm.nih.gov/pubmed/36910079 http://dx.doi.org/10.21037/jtd-23-142 |
Sumario: | BACKGROUND: Radiomics is one of the research frontiers in the field of imaging and has excellent diagnostic performance. However, there is a lack of magnetic resonance imaging (MRI)-based omics studies on identifying pathological subtypes of lung cancer. Here we explored the value of the contrast-enhanced MRI-T2-weighted imaging (T2WI)-based radiomic analysis in distinguishing adenocarcinoma (Ade) from squamous cell carcinoma (Squ) with solid components >8 mm. METHODS: A retrospective analysis was performed of a total of 71 lung cancer patients who undergoing contrast-enhanced MRI and computed tomography (CT) before treatment, and the nodules had solid components ≥8 mm in our center from January 2020 to September 2021. All enrolled patients were divided into Squ and Ade groups according to the pathological results. In addition, the two groups were randomly divided into training set and validation set in a ratio of about 7:3. Radiomics software was used to extract the relevant radiomic features. The least absolute shrinkage and selection operator (Lasso) was used to screen radiomic features that were most relevant to lung cancer subtypes, thus calculating the radiomic scores (Rad-score) and constructing the radiomic models. Multivariate logistic regression was used to combine relevant clinical features with Rad-score to form combined model nomograms. The receiver operating characteristic (ROC) curves. the area under the ROC curve (AUC), the decision curve analysis (DCA) and the DeLong’s test were used to evaluate the clinical application potentials. RESULTS: The sensitivity and specificity of the clinical model based on smoking was 75.0% and 93.8%. The AUC of the constructed magnetic resonance (MR)-Rad model for differentiating the pathological subtypes of lung cancer was 0.8651 in the validation sets. The AUC of the CT-Rad model in the validation set were 0.9286. The combined model constructed by combining clinical features and Rad-score had AUC of 0.8016, for identifying the 2 pathological subtypes of lung cancer in the validation set. There was no significant difference in diagnostic performance between MR-Rad model and CT-Rad model (P>0.05). CONCLUSIONS: The MR-Rad model has a diagnostic performance similar to that of CT-Rad model, while the diagnostic performance of the combined mode was better than the single MR model. |
---|