Cargando…

MFCSC: Novel method to calculate mismatch between functional and structural brain connectomes, and its application for detecting hemispheric functional specialisations

We introduce a novel connectomics method, MFCSC, that integrates information on structural connectivity (SC) from diffusion MRI tractography and functional connectivity (FC) from functional MRI, at individual subject level. The MFCSC method is based on the fact that SC only broadly predicts FC, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Civier, Oren, Sourty, Marion, Calamante, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992688/
https://www.ncbi.nlm.nih.gov/pubmed/36882426
http://dx.doi.org/10.1038/s41598-022-17213-z
Descripción
Sumario:We introduce a novel connectomics method, MFCSC, that integrates information on structural connectivity (SC) from diffusion MRI tractography and functional connectivity (FC) from functional MRI, at individual subject level. The MFCSC method is based on the fact that SC only broadly predicts FC, and for each connection in the brain, the method calculates a value that quantifies the mismatch that often still exists between the two modalities. To capture underlying physiological properties, MFCSC minimises biases in SC and addresses challenges with the multimodal analysis, including by using a data-driven normalisation approach. We ran MFCSC on data from the Human Connectome Project and used the output to detect pairs of left and right unilateral connections that have distinct relationship between structure and function in each hemisphere; we suggest that this reflects cases of hemispheric functional specialisation. In conclusion, the MFCSC method provides new information on brain organisation that may not be inferred from an analysis that considers SC and FC separately.