Cargando…
Bayesian inference in ring attractor networks
Working memories are thought to be held in attractor networks in the brain. These attractors should keep track of the uncertainty associated with each memory, so as to weigh it properly against conflicting new evidence. However, conventional attractors do not represent uncertainty. Here, we show how...
Autores principales: | Kutschireiter, Anna, Basnak, Melanie A., Wilson, Rachel I., Drugowitsch, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992764/ https://www.ncbi.nlm.nih.gov/pubmed/36812206 http://dx.doi.org/10.1073/pnas.2210622120 |
Ejemplares similares
-
Bayesian inference of reassortment networks reveals fitness benefits of reassortment in human influenza viruses
por: Müller, Nicola F., et al.
Publicado: (2020) -
Human visual motion perception shows hallmarks of Bayesian structural inference
por: Yang, Sichao, et al.
Publicado: (2021) -
Efficient Bayesian inference under the multispecies coalescent with migration
por: Flouri, Tomáš, et al.
Publicado: (2023) -
Generalizing Bayesian phylogenetics to infer shared evolutionary events
por: Oaks, Jamie R., et al.
Publicado: (2022) -
Causal Inference and Explaining Away in a Spiking Network
por: Moreno-Bote, Rubén, et al.
Publicado: (2015)