Cargando…
Video-rate Raman-based metabolic imaging by Airy light-sheet illumination and photon-sparse detection
Despite its massive potential, Raman imaging represents just a modest fraction of all research and clinical microscopy to date. This is due to the ultralow Raman scattering cross-sections of most biomolecules that impose low-light or photon-sparse conditions. Bioimaging under such conditions is subo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992822/ https://www.ncbi.nlm.nih.gov/pubmed/36812197 http://dx.doi.org/10.1073/pnas.2210037120 |
Sumario: | Despite its massive potential, Raman imaging represents just a modest fraction of all research and clinical microscopy to date. This is due to the ultralow Raman scattering cross-sections of most biomolecules that impose low-light or photon-sparse conditions. Bioimaging under such conditions is suboptimal, as it either results in ultralow frame rates or requires increased levels of irradiance. Here, we overcome this tradeoff by introducing Raman imaging that operates at both video rates and 1,000-fold lower irradiance than state-of-the-art methods. To accomplish this, we deployed a judicially designed Airy light-sheet microscope to efficiently image large specimen regions. Further, we implemented subphoton per pixel image acquisition and reconstruction to confront issues arising from photon sparsity at just millisecond integrations. We demonstrate the versatility of our approach by imaging a variety of samples, including the three-dimensional (3D) metabolic activity of single microbial cells and the underlying cell-to-cell variability. To image such small-scale targets, we again harnessed photon sparsity to increase magnification without a field-of-view penalty, thus, overcoming another key limitation in modern light-sheet microscopy. |
---|