Cargando…
Reimagining the machine learning life cycle to improve educational outcomes of students
Machine learning (ML) techniques are increasingly prevalent in education, from their use in predicting student dropout to assisting in university admissions and facilitating the rise of massive open online courses (MOOCs). Given the rapid growth of these novel uses, there is a pressing need to inves...
Autores principales: | Liu, Lydia T., Wang, Serena, Britton, Tolani, Abebe, Rediet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992853/ https://www.ncbi.nlm.nih.gov/pubmed/36827260 http://dx.doi.org/10.1073/pnas.2204781120 |
Ejemplares similares
-
Work reimagined
por: Leider, Richard, et al.
Publicado: (2015) -
Life Reimagined
por: Leider, Richard
Publicado: (2013) -
SAGES Reimagining Education & Learning (REAL) project
por: Dort, Jonathan, et al.
Publicado: (2022) -
Reimagining the Introductory Math Curriculum for Life Sciences Students
por: O’Leary, Erin Sanders, et al.
Publicado: (2021) -
Reinventing the supply chain life cycle: student workbook
por: Schniederjans, Marc J, et al.
Publicado: (2013)