Cargando…
Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets
Every year, millions of brain MRI scans are acquired in hospitals, which is a figure considerably larger than the size of any research dataset. Therefore, the ability to analyze such scans could transform neuroimaging research. Yet, their potential remains untapped since no automated algorithm is ro...
Autores principales: | Billot, Benjamin, Magdamo, Colin, Cheng, You, Arnold, Steven E., Das, Sudeshna, Iglesias, Juan Eugenio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992854/ https://www.ncbi.nlm.nih.gov/pubmed/36802420 http://dx.doi.org/10.1073/pnas.2216399120 |
Ejemplares similares
-
SynthSR: A public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry
por: Iglesias, Juan E., et al.
Publicado: (2023) -
Automated segmentation of the hypothalamus and associated subunits in brain MRI()
por: Billot, Benjamin, et al.
Publicado: (2020) -
SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining
por: Billot, Benjamin, et al.
Publicado: (2023) -
A deep learning toolbox for automatic segmentation of subcortical limbic structures from MRI images
por: Greve, Douglas N., et al.
Publicado: (2021) -
Recovering large-scale battery aging dataset with machine learning
por: Tang, Xiaopeng, et al.
Publicado: (2021)