Cargando…

Depression screening using hybrid neural network

Depression is a common cause of increased suicides worldwide, and studies have shown that the number of patients suffering from major depressive disorder (MDD) increased several-fold during the COVID-19 pandemic, highlighting the importance of disease detection and depression management, while incre...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jiao, Xu, Baomin, Yin, Hongfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992920/
https://www.ncbi.nlm.nih.gov/pubmed/37362740
http://dx.doi.org/10.1007/s11042-023-14860-w
Descripción
Sumario:Depression is a common cause of increased suicides worldwide, and studies have shown that the number of patients suffering from major depressive disorder (MDD) increased several-fold during the COVID-19 pandemic, highlighting the importance of disease detection and depression management, while increasing the need for effective diagnostic tools. In recent years, machine learning and deep learning methods based on electroencephalography (EEG) have achieved significant results in the field of automatic depression detection. However, most current studies have focused on a small number of EEG signal channels, and experimental data require special processing by professionals. In this study, 128 channels of EEG signals were simply filtered and 24-fold leave-one-out cross-validation experiments were performed using 2DCNN-LSTM classifier, support vector machine, K-nearest neighbor and decision tree. The current results show that the proposed 2DCNN-LSTM model has an average classification accuracy of 95.1% with an AUC of 0.98 for depression detection of 6-second participant EEG signals, and the model is much better than 72.05%, 79.7% and 79.49% for support vector machine, K nearest neighbor and decision tree. In addition, we found that the model achieved a 100% probability of correctly classifying the EEG signals of 300-second participants.