Cargando…

Hierarchically nested networks optimize the analysis of audiovisual speech

In conversational settings, seeing the speaker’s face elicits internal predictions about the upcoming acoustic utterance. Understanding how the listener’s cortical dynamics tune to the temporal statistics of audiovisual (AV) speech is thus essential. Using magnetoencephalography, we explored how lar...

Descripción completa

Detalles Bibliográficos
Autores principales: Chalas, Nikos, Omigie, Diana, Poeppel, David, van Wassenhove, Virginie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993032/
https://www.ncbi.nlm.nih.gov/pubmed/36909667
http://dx.doi.org/10.1016/j.isci.2023.106257
_version_ 1784902445452754944
author Chalas, Nikos
Omigie, Diana
Poeppel, David
van Wassenhove, Virginie
author_facet Chalas, Nikos
Omigie, Diana
Poeppel, David
van Wassenhove, Virginie
author_sort Chalas, Nikos
collection PubMed
description In conversational settings, seeing the speaker’s face elicits internal predictions about the upcoming acoustic utterance. Understanding how the listener’s cortical dynamics tune to the temporal statistics of audiovisual (AV) speech is thus essential. Using magnetoencephalography, we explored how large-scale frequency-specific dynamics of human brain activity adapt to AV speech delays. First, we show that the amplitude of phase-locked responses parametrically decreases with natural AV speech synchrony, a pattern that is consistent with predictive coding. Second, we show that the temporal statistics of AV speech affect large-scale oscillatory networks at multiple spatial and temporal resolutions. We demonstrate a spatial nestedness of oscillatory networks during the processing of AV speech: these oscillatory hierarchies are such that high-frequency activity (beta, gamma) is contingent on the phase response of low-frequency (delta, theta) networks. Our findings suggest that the endogenous temporal multiplexing of speech processing confers adaptability within the temporal regimes that are essential for speech comprehension.
format Online
Article
Text
id pubmed-9993032
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-99930322023-03-09 Hierarchically nested networks optimize the analysis of audiovisual speech Chalas, Nikos Omigie, Diana Poeppel, David van Wassenhove, Virginie iScience Article In conversational settings, seeing the speaker’s face elicits internal predictions about the upcoming acoustic utterance. Understanding how the listener’s cortical dynamics tune to the temporal statistics of audiovisual (AV) speech is thus essential. Using magnetoencephalography, we explored how large-scale frequency-specific dynamics of human brain activity adapt to AV speech delays. First, we show that the amplitude of phase-locked responses parametrically decreases with natural AV speech synchrony, a pattern that is consistent with predictive coding. Second, we show that the temporal statistics of AV speech affect large-scale oscillatory networks at multiple spatial and temporal resolutions. We demonstrate a spatial nestedness of oscillatory networks during the processing of AV speech: these oscillatory hierarchies are such that high-frequency activity (beta, gamma) is contingent on the phase response of low-frequency (delta, theta) networks. Our findings suggest that the endogenous temporal multiplexing of speech processing confers adaptability within the temporal regimes that are essential for speech comprehension. Elsevier 2023-02-20 /pmc/articles/PMC9993032/ /pubmed/36909667 http://dx.doi.org/10.1016/j.isci.2023.106257 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Chalas, Nikos
Omigie, Diana
Poeppel, David
van Wassenhove, Virginie
Hierarchically nested networks optimize the analysis of audiovisual speech
title Hierarchically nested networks optimize the analysis of audiovisual speech
title_full Hierarchically nested networks optimize the analysis of audiovisual speech
title_fullStr Hierarchically nested networks optimize the analysis of audiovisual speech
title_full_unstemmed Hierarchically nested networks optimize the analysis of audiovisual speech
title_short Hierarchically nested networks optimize the analysis of audiovisual speech
title_sort hierarchically nested networks optimize the analysis of audiovisual speech
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993032/
https://www.ncbi.nlm.nih.gov/pubmed/36909667
http://dx.doi.org/10.1016/j.isci.2023.106257
work_keys_str_mv AT chalasnikos hierarchicallynestednetworksoptimizetheanalysisofaudiovisualspeech
AT omigiediana hierarchicallynestednetworksoptimizetheanalysisofaudiovisualspeech
AT poeppeldavid hierarchicallynestednetworksoptimizetheanalysisofaudiovisualspeech
AT vanwassenhovevirginie hierarchicallynestednetworksoptimizetheanalysisofaudiovisualspeech