Cargando…
Application of machine learning to identify risk factors of birth asphyxia
BACKGROUND: Developing a prediction model that incorporates several risk factors and accurately calculates the overall risk of birth asphyxia is necessary. The present study used a machine learning model to predict birth asphyxia. METHODS: Women who gave birth at a tertiary Hospital in Bandar Abbas,...
Autores principales: | Darsareh, Fatemeh, Ranjbar, Amene, Farashah, Mohammadsadegh Vahidi, Mehrnoush, Vahid, Shekari, Mitra, Jahromi, Malihe Shirzadfard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993370/ https://www.ncbi.nlm.nih.gov/pubmed/36890453 http://dx.doi.org/10.1186/s12884-023-05486-9 |
Ejemplares similares
-
Prediction of postpartum hemorrhage using traditional statistical analysis and a machine learning approach
por: Mehrnoush, Vahid, et al.
Publicado: (2023) -
Machine learning-based approach for predicting low birth weight
por: Ranjbar, Amene, et al.
Publicado: (2023) -
The incidence and risk factors of meconium amniotic fluid in singleton pregnancies: an experience of a tertiary hospital in Iran
por: Shekari, Mitra, et al.
Publicado: (2022) -
Vaginal Laser Therapy for Stress Urinary Incontinence: A Systematic Review of Prospective Randomized Clinical Trials
por: Ranjbar, Amene, et al.
Publicado: (2022) -
The Incidence and Outcomes of Late-Term Pregnancy
por: Ranjbar, Amene, et al.
Publicado: (2023)