Cargando…
Asymmetric and zwitterionic Blatter diradicals
Asymmetric diradical molecular systems with different resonance mechanisms are largely unexplored. Herein, two conjugated asymmetric diradicals with Blatter and phenoxyl moieties (pBP and mBP) have been synthesized and studied in depth. A complete set of spectroscopic, X-ray crystallographic and mag...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993846/ https://www.ncbi.nlm.nih.gov/pubmed/36908964 http://dx.doi.org/10.1039/d3sc00367a |
_version_ | 1784902581097594880 |
---|---|
author | Miao, Fang Ji, Yu Han, Bo Quintero, Sergio Moles Chen, Hanjiao Xue, Guodong Cai, Lulu Casado, Juan Zheng, Yonghao |
author_facet | Miao, Fang Ji, Yu Han, Bo Quintero, Sergio Moles Chen, Hanjiao Xue, Guodong Cai, Lulu Casado, Juan Zheng, Yonghao |
author_sort | Miao, Fang |
collection | PubMed |
description | Asymmetric diradical molecular systems with different resonance mechanisms are largely unexplored. Herein, two conjugated asymmetric diradicals with Blatter and phenoxyl moieties (pBP and mBP) have been synthesized and studied in depth. A complete set of spectroscopic, X-ray crystallographic and magnetic techniques, together with quantum chemical calculations, have been used. The para-isomer (pBP) bears diradical and zwitterionic resonant forms, the latter by a electron delocalization mechanism, which are synergistically integrated by a sequence of nitrogen, provided by the Blatter moiety imine and amine (of different acceptor nature). In the meta-isomer (mBP), the zwitterionic form promoted in pBP by the lone-pair electron of the amine nitrogen is not available, yet it possesses a pseudo-hyperconjugation effect where the N lone pair mediates in a bonding coupling in a counter homolytic bond scission mechanism. Both electronic effects converge to promote medium diradical characters and narrow singlet–triplet gaps to the two electronic isomers. All these aspects delineate the subtle balance that shapes the electronic structure of open-shell molecules, which is even more challenging in the case of asymmetric systems, such as those described here with asymmetric phenoxyl–Blatter diradicals. |
format | Online Article Text |
id | pubmed-9993846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-99938462023-03-09 Asymmetric and zwitterionic Blatter diradicals Miao, Fang Ji, Yu Han, Bo Quintero, Sergio Moles Chen, Hanjiao Xue, Guodong Cai, Lulu Casado, Juan Zheng, Yonghao Chem Sci Chemistry Asymmetric diradical molecular systems with different resonance mechanisms are largely unexplored. Herein, two conjugated asymmetric diradicals with Blatter and phenoxyl moieties (pBP and mBP) have been synthesized and studied in depth. A complete set of spectroscopic, X-ray crystallographic and magnetic techniques, together with quantum chemical calculations, have been used. The para-isomer (pBP) bears diradical and zwitterionic resonant forms, the latter by a electron delocalization mechanism, which are synergistically integrated by a sequence of nitrogen, provided by the Blatter moiety imine and amine (of different acceptor nature). In the meta-isomer (mBP), the zwitterionic form promoted in pBP by the lone-pair electron of the amine nitrogen is not available, yet it possesses a pseudo-hyperconjugation effect where the N lone pair mediates in a bonding coupling in a counter homolytic bond scission mechanism. Both electronic effects converge to promote medium diradical characters and narrow singlet–triplet gaps to the two electronic isomers. All these aspects delineate the subtle balance that shapes the electronic structure of open-shell molecules, which is even more challenging in the case of asymmetric systems, such as those described here with asymmetric phenoxyl–Blatter diradicals. The Royal Society of Chemistry 2023-02-21 /pmc/articles/PMC9993846/ /pubmed/36908964 http://dx.doi.org/10.1039/d3sc00367a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Miao, Fang Ji, Yu Han, Bo Quintero, Sergio Moles Chen, Hanjiao Xue, Guodong Cai, Lulu Casado, Juan Zheng, Yonghao Asymmetric and zwitterionic Blatter diradicals |
title | Asymmetric and zwitterionic Blatter diradicals |
title_full | Asymmetric and zwitterionic Blatter diradicals |
title_fullStr | Asymmetric and zwitterionic Blatter diradicals |
title_full_unstemmed | Asymmetric and zwitterionic Blatter diradicals |
title_short | Asymmetric and zwitterionic Blatter diradicals |
title_sort | asymmetric and zwitterionic blatter diradicals |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993846/ https://www.ncbi.nlm.nih.gov/pubmed/36908964 http://dx.doi.org/10.1039/d3sc00367a |
work_keys_str_mv | AT miaofang asymmetricandzwitterionicblatterdiradicals AT jiyu asymmetricandzwitterionicblatterdiradicals AT hanbo asymmetricandzwitterionicblatterdiradicals AT quinterosergiomoles asymmetricandzwitterionicblatterdiradicals AT chenhanjiao asymmetricandzwitterionicblatterdiradicals AT xueguodong asymmetricandzwitterionicblatterdiradicals AT cailulu asymmetricandzwitterionicblatterdiradicals AT casadojuan asymmetricandzwitterionicblatterdiradicals AT zhengyonghao asymmetricandzwitterionicblatterdiradicals |