Cargando…
Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation
Solid-state radical generation is an attractive but underutilized methodology in the catalytic strong bond activation process, such as the aryl-halide bond. Traditionally, such a process of strong bond activation relied upon the use of transition metal complexes or strongly reducing photocatalysts i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993847/ https://www.ncbi.nlm.nih.gov/pubmed/36908958 http://dx.doi.org/10.1039/d2sc06119h |
_version_ | 1784902581349253120 |
---|---|
author | Biswas, Amit Bhunia, Anup Mandal, Swadhin K. |
author_facet | Biswas, Amit Bhunia, Anup Mandal, Swadhin K. |
author_sort | Biswas, Amit |
collection | PubMed |
description | Solid-state radical generation is an attractive but underutilized methodology in the catalytic strong bond activation process, such as the aryl-halide bond. Traditionally, such a process of strong bond activation relied upon the use of transition metal complexes or strongly reducing photocatalysts in organic solvents. The generation of the aryl radical from aryl halides in the absence of transition-metal or external stimuli, such as light or cathodic current, remains an elusive process. In this study, we describe a reduced organic hydrocarbon, which can act as a super reductant in the solid state to activate strong bonds by solid-state single electron transfer (SSSET) under the influence of mechanical energy leading to a catalytic strategy based on the mechano-SSSET or mechanoredox process. Here, we investigate the solid-state synthesis of the super electron donor phenalenyl anion in a ball mill and its application as an active catalyst in strong bond (aryl halide) activation. Aryl radicals generated from aryl halides by employing this strategy are competent for various carbon–carbon bond-forming reactions under solvent-free and transition metal-free conditions. We illustrate this approach for partially soluble or insoluble polyaromatic arenes in accomplishing solid–solid C–C cross-coupling catalysis, which is otherwise difficult to achieve by traditional methods using solvents. |
format | Online Article Text |
id | pubmed-9993847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-99938472023-03-09 Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation Biswas, Amit Bhunia, Anup Mandal, Swadhin K. Chem Sci Chemistry Solid-state radical generation is an attractive but underutilized methodology in the catalytic strong bond activation process, such as the aryl-halide bond. Traditionally, such a process of strong bond activation relied upon the use of transition metal complexes or strongly reducing photocatalysts in organic solvents. The generation of the aryl radical from aryl halides in the absence of transition-metal or external stimuli, such as light or cathodic current, remains an elusive process. In this study, we describe a reduced organic hydrocarbon, which can act as a super reductant in the solid state to activate strong bonds by solid-state single electron transfer (SSSET) under the influence of mechanical energy leading to a catalytic strategy based on the mechano-SSSET or mechanoredox process. Here, we investigate the solid-state synthesis of the super electron donor phenalenyl anion in a ball mill and its application as an active catalyst in strong bond (aryl halide) activation. Aryl radicals generated from aryl halides by employing this strategy are competent for various carbon–carbon bond-forming reactions under solvent-free and transition metal-free conditions. We illustrate this approach for partially soluble or insoluble polyaromatic arenes in accomplishing solid–solid C–C cross-coupling catalysis, which is otherwise difficult to achieve by traditional methods using solvents. The Royal Society of Chemistry 2023-02-02 /pmc/articles/PMC9993847/ /pubmed/36908958 http://dx.doi.org/10.1039/d2sc06119h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Biswas, Amit Bhunia, Anup Mandal, Swadhin K. Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation |
title | Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation |
title_full | Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation |
title_fullStr | Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation |
title_full_unstemmed | Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation |
title_short | Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation |
title_sort | mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993847/ https://www.ncbi.nlm.nih.gov/pubmed/36908958 http://dx.doi.org/10.1039/d2sc06119h |
work_keys_str_mv | AT biswasamit mechanochemicalsolidstatesingleelectrontransferfromreducedorganichydrocarbonforcatalyticarylhalidebondactivation AT bhuniaanup mechanochemicalsolidstatesingleelectrontransferfromreducedorganichydrocarbonforcatalyticarylhalidebondactivation AT mandalswadhink mechanochemicalsolidstatesingleelectrontransferfromreducedorganichydrocarbonforcatalyticarylhalidebondactivation |