Cargando…

A “tug-of-war” effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries

“Solvent-in-salt” electrolytes (high-concentration electrolytes (HCEs)) and diluted high-concentration electrolytes (DHCEs) show great promise for reviving secondary lithium metal batteries (LMBs). However, the inherently sluggish Li(+) transport of such electrolytes limits the high-rate capability...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Han, Zeng, Ziqi, Liu, Mengchuang, Ma, Fenfen, Qin, Mingsheng, Wang, Xinlan, Wu, Yuanke, Lei, Sheng, Cheng, Shijie, Xie, Jia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993850/
https://www.ncbi.nlm.nih.gov/pubmed/36908970
http://dx.doi.org/10.1039/d2sc06620c
_version_ 1784902582093742080
author Zhang, Han
Zeng, Ziqi
Liu, Mengchuang
Ma, Fenfen
Qin, Mingsheng
Wang, Xinlan
Wu, Yuanke
Lei, Sheng
Cheng, Shijie
Xie, Jia
author_facet Zhang, Han
Zeng, Ziqi
Liu, Mengchuang
Ma, Fenfen
Qin, Mingsheng
Wang, Xinlan
Wu, Yuanke
Lei, Sheng
Cheng, Shijie
Xie, Jia
author_sort Zhang, Han
collection PubMed
description “Solvent-in-salt” electrolytes (high-concentration electrolytes (HCEs)) and diluted high-concentration electrolytes (DHCEs) show great promise for reviving secondary lithium metal batteries (LMBs). However, the inherently sluggish Li(+) transport of such electrolytes limits the high-rate capability of LMBs for practical conditions. Here, we discovered a “tug-of-war” effect in a multilayer solvation sheath that promoted the rate capability of LMBs; the pulling force of solvent–nonsolvent interactions competed with the compressive force of Li(+)-nonsolvent interactions. By elaborately manipulating the pulling and compressive effects, the interaction between Li(+) and the solvent was weakened, leading to a loosened solvation sheath. Thereby, the developed electrolytes enabled a high Li(+) transference number (0.65) and a Li (50 μm)‖NCM712 (4 mA h cm(−2)) full cell exhibited long-term cycling stability (160 cycles; 80% capacity retention) at a high rate of 0.33C (1.32 mA cm(−2)). Notably, Li (50 μm)‖LiFePO(4) (LFP; 17.4 mg cm(−2)) cells with a designed electrolyte reached a capacity retention of 80% after 1450 cycles at a rate of 0.66C. An 6 Ah Li‖LFP pouch cell (over 250 W h kg(−1)) showed excellent cycling stability (130 cycles, 96% capacity retention) under practical conditions. This design concept for an electrolyte provides a promising path to build high-energy-density and high-rate LMBs.
format Online
Article
Text
id pubmed-9993850
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-99938502023-03-09 A “tug-of-war” effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries Zhang, Han Zeng, Ziqi Liu, Mengchuang Ma, Fenfen Qin, Mingsheng Wang, Xinlan Wu, Yuanke Lei, Sheng Cheng, Shijie Xie, Jia Chem Sci Chemistry “Solvent-in-salt” electrolytes (high-concentration electrolytes (HCEs)) and diluted high-concentration electrolytes (DHCEs) show great promise for reviving secondary lithium metal batteries (LMBs). However, the inherently sluggish Li(+) transport of such electrolytes limits the high-rate capability of LMBs for practical conditions. Here, we discovered a “tug-of-war” effect in a multilayer solvation sheath that promoted the rate capability of LMBs; the pulling force of solvent–nonsolvent interactions competed with the compressive force of Li(+)-nonsolvent interactions. By elaborately manipulating the pulling and compressive effects, the interaction between Li(+) and the solvent was weakened, leading to a loosened solvation sheath. Thereby, the developed electrolytes enabled a high Li(+) transference number (0.65) and a Li (50 μm)‖NCM712 (4 mA h cm(−2)) full cell exhibited long-term cycling stability (160 cycles; 80% capacity retention) at a high rate of 0.33C (1.32 mA cm(−2)). Notably, Li (50 μm)‖LiFePO(4) (LFP; 17.4 mg cm(−2)) cells with a designed electrolyte reached a capacity retention of 80% after 1450 cycles at a rate of 0.66C. An 6 Ah Li‖LFP pouch cell (over 250 W h kg(−1)) showed excellent cycling stability (130 cycles, 96% capacity retention) under practical conditions. This design concept for an electrolyte provides a promising path to build high-energy-density and high-rate LMBs. The Royal Society of Chemistry 2023-02-07 /pmc/articles/PMC9993850/ /pubmed/36908970 http://dx.doi.org/10.1039/d2sc06620c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Zhang, Han
Zeng, Ziqi
Liu, Mengchuang
Ma, Fenfen
Qin, Mingsheng
Wang, Xinlan
Wu, Yuanke
Lei, Sheng
Cheng, Shijie
Xie, Jia
A “tug-of-war” effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries
title A “tug-of-war” effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries
title_full A “tug-of-war” effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries
title_fullStr A “tug-of-war” effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries
title_full_unstemmed A “tug-of-war” effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries
title_short A “tug-of-war” effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries
title_sort “tug-of-war” effect tunes li-ion transport and enhances the rate capability of lithium metal batteries
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993850/
https://www.ncbi.nlm.nih.gov/pubmed/36908970
http://dx.doi.org/10.1039/d2sc06620c
work_keys_str_mv AT zhanghan atugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT zengziqi atugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT liumengchuang atugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT mafenfen atugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT qinmingsheng atugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT wangxinlan atugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT wuyuanke atugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT leisheng atugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT chengshijie atugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT xiejia atugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT zhanghan tugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT zengziqi tugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT liumengchuang tugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT mafenfen tugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT qinmingsheng tugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT wangxinlan tugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT wuyuanke tugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT leisheng tugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT chengshijie tugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries
AT xiejia tugofwareffecttunesliiontransportandenhancestheratecapabilityoflithiummetalbatteries