Cargando…
Incorporating the synthetic CT image for improving the performance of deformable image registration between planning CT and cone-beam CT
OBJECTIVE: To develop a contrast learning-based generative (CLG) model for the generation of high-quality synthetic computed tomography (sCT) from low-quality cone-beam CT (CBCT). The CLG model improves the performance of deformable image registration (DIR). METHODS: This study included 100 post-bre...
Autores principales: | Li, Na, Zhou, Xuanru, Chen, Shupeng, Dai, Jingjing, Wang, Tangsheng, Zhang, Chulong, He, Wenfeng, Xie, Yaoqin, Liang, Xiaokun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993856/ https://www.ncbi.nlm.nih.gov/pubmed/36910636 http://dx.doi.org/10.3389/fonc.2023.1127866 |
Ejemplares similares
-
Evaluation of Deformable Image Registration-Based Contour Propagation From Planning CT to Cone-Beam CT
por: Woerner, Andrew J., et al.
Publicado: (2017) -
Investigation of dosimetric variations of liver radiotherapy using deformable registration of planning CT and cone‐beam CT
por: Huang, Pu, et al.
Publicado: (2016) -
A Stationary Wavelet Transform Based Approach to Registration of Planning CT and Setup Cone beam-CT Images in Radiotherapy
por: Deng, Jun-min, et al.
Publicado: (2014) -
A Deep Unsupervised Learning Model for Artifact Correction of Pelvis Cone-Beam CT
por: Dong, Guoya, et al.
Publicado: (2021) -
Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy
por: Li, Xin, et al.
Publicado: (2017)