Cargando…
Harnessing heterogeneity in space with statistically guided meta-learning
Spatial data are ubiquitous, massively collected, and widely used to support critical decision-making in many societal domains, including public health (e.g., COVID-19 pandemic control), agricultural crop monitoring, transportation, etc. While recent advances in machine learning and deep learning of...
Autores principales: | Xie, Yiqun, Chen, Weiye, He, Erhu, Jia, Xiaowei, Bao, Han, Zhou, Xun, Ghosh, Rahul, Ravirathinam, Praveen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9994417/ https://www.ncbi.nlm.nih.gov/pubmed/37035130 http://dx.doi.org/10.1007/s10115-023-01847-0 |
Ejemplares similares
-
ReaLSAT, a global dataset of reservoir and lake surface area variations
por: Khandelwal, Ankush, et al.
Publicado: (2022) -
Harnessing machine learning to guide phylogenetic-tree search algorithms
por: Azouri, Dana, et al.
Publicado: (2021) -
Statistical learning of spatiotemporal regularities dynamically guides visual attention across space
por: Xu, Zhenzhen, et al.
Publicado: (2022) -
The Role of Stimulus‐Specific Perceptual Fluency in Statistical Learning
por: Perfors, Andrew, et al.
Publicado: (2022) -
Harnessing the therapeutic vulnerability of MMR heterogeneity in colorectal cancer
por: Anandappa, Gayathri, et al.
Publicado: (2023)