Cargando…
Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development
The Snf2 chromatin remodeler, DECREASE IN DNA METHYLATION 1 (DDM1) facilitates DNA methylation. In flowering plants, DDM1 mediates methylation in heterochromatin, which is targeted primarily by MET1 and CMT methylases and is necessary for silencing transposons and for proper development. DNA methyla...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9994747/ https://www.ncbi.nlm.nih.gov/pubmed/36888585 http://dx.doi.org/10.1371/journal.pone.0279688 |
_version_ | 1784902683238334464 |
---|---|
author | Griess, Ofir Domb, Katherine Katz, Aviva Harris, Keith D. Heskiau, Karina G. Ohad, Nir Zemach, Assaf |
author_facet | Griess, Ofir Domb, Katherine Katz, Aviva Harris, Keith D. Heskiau, Karina G. Ohad, Nir Zemach, Assaf |
author_sort | Griess, Ofir |
collection | PubMed |
description | The Snf2 chromatin remodeler, DECREASE IN DNA METHYLATION 1 (DDM1) facilitates DNA methylation. In flowering plants, DDM1 mediates methylation in heterochromatin, which is targeted primarily by MET1 and CMT methylases and is necessary for silencing transposons and for proper development. DNA methylation mechanisms evolved throughout plant evolution, whereas the role of DDM1 in early terrestrial plants remains elusive. Here, we studied the function of DDM1 in the moss, Physcomitrium (Physcomitrella) patens, which has robust DNA methylation that suppresses transposons and is mediated by a MET1, a CMT, and a DNMT3 methylases. To elucidate the role of DDM1 in P. patens, we have generated a knockout mutant and found DNA methylation to be strongly disrupted at any of its sequence contexts. Symmetric CG and CHG sequences were affected stronger than asymmetric CHH sites. Furthermore, despite their separate targeting mechanisms, CG (MET) and CHG (CMT) methylation were similarly depleted by about 75%. CHH (DNMT3) methylation was overall reduced by about 25%, with an evident hyper-methylation activity within lowly-methylated euchromatic transposon sequences. Despite the strong hypomethylation effect, only a minute number of transposons were transcriptionally activated in Ppddm1. Finally, Ppddm1 was found to develop normally throughout the plant life cycle. These results demonstrate that DNA methylation is strongly dependent on DDM1 in a non-flowering plant; that DDM1 is required for plant-DNMT3 (CHH) methylases, though to a lower extent than for MET1 and CMT enzymes; and that distinct and separate methylation pathways (e.g. MET1-CG and CMT-CHG), can be equally regulated by the chromatin and that DDM1 plays a role in it. Finally, our data suggest that the biological significance of DDM1 in terms of transposon regulation and plant development, is species dependent. |
format | Online Article Text |
id | pubmed-9994747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-99947472023-03-09 Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development Griess, Ofir Domb, Katherine Katz, Aviva Harris, Keith D. Heskiau, Karina G. Ohad, Nir Zemach, Assaf PLoS One Research Article The Snf2 chromatin remodeler, DECREASE IN DNA METHYLATION 1 (DDM1) facilitates DNA methylation. In flowering plants, DDM1 mediates methylation in heterochromatin, which is targeted primarily by MET1 and CMT methylases and is necessary for silencing transposons and for proper development. DNA methylation mechanisms evolved throughout plant evolution, whereas the role of DDM1 in early terrestrial plants remains elusive. Here, we studied the function of DDM1 in the moss, Physcomitrium (Physcomitrella) patens, which has robust DNA methylation that suppresses transposons and is mediated by a MET1, a CMT, and a DNMT3 methylases. To elucidate the role of DDM1 in P. patens, we have generated a knockout mutant and found DNA methylation to be strongly disrupted at any of its sequence contexts. Symmetric CG and CHG sequences were affected stronger than asymmetric CHH sites. Furthermore, despite their separate targeting mechanisms, CG (MET) and CHG (CMT) methylation were similarly depleted by about 75%. CHH (DNMT3) methylation was overall reduced by about 25%, with an evident hyper-methylation activity within lowly-methylated euchromatic transposon sequences. Despite the strong hypomethylation effect, only a minute number of transposons were transcriptionally activated in Ppddm1. Finally, Ppddm1 was found to develop normally throughout the plant life cycle. These results demonstrate that DNA methylation is strongly dependent on DDM1 in a non-flowering plant; that DDM1 is required for plant-DNMT3 (CHH) methylases, though to a lower extent than for MET1 and CMT enzymes; and that distinct and separate methylation pathways (e.g. MET1-CG and CMT-CHG), can be equally regulated by the chromatin and that DDM1 plays a role in it. Finally, our data suggest that the biological significance of DDM1 in terms of transposon regulation and plant development, is species dependent. Public Library of Science 2023-03-08 /pmc/articles/PMC9994747/ /pubmed/36888585 http://dx.doi.org/10.1371/journal.pone.0279688 Text en © 2023 Griess et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Griess, Ofir Domb, Katherine Katz, Aviva Harris, Keith D. Heskiau, Karina G. Ohad, Nir Zemach, Assaf Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development |
title | Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development |
title_full | Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development |
title_fullStr | Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development |
title_full_unstemmed | Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development |
title_short | Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development |
title_sort | knockout of ddm1 in physcomitrium patens disrupts dna methylation with a minute effect on transposon regulation and development |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9994747/ https://www.ncbi.nlm.nih.gov/pubmed/36888585 http://dx.doi.org/10.1371/journal.pone.0279688 |
work_keys_str_mv | AT griessofir knockoutofddm1inphyscomitriumpatensdisruptsdnamethylationwithaminuteeffectontransposonregulationanddevelopment AT dombkatherine knockoutofddm1inphyscomitriumpatensdisruptsdnamethylationwithaminuteeffectontransposonregulationanddevelopment AT katzaviva knockoutofddm1inphyscomitriumpatensdisruptsdnamethylationwithaminuteeffectontransposonregulationanddevelopment AT harriskeithd knockoutofddm1inphyscomitriumpatensdisruptsdnamethylationwithaminuteeffectontransposonregulationanddevelopment AT heskiaukarinag knockoutofddm1inphyscomitriumpatensdisruptsdnamethylationwithaminuteeffectontransposonregulationanddevelopment AT ohadnir knockoutofddm1inphyscomitriumpatensdisruptsdnamethylationwithaminuteeffectontransposonregulationanddevelopment AT zemachassaf knockoutofddm1inphyscomitriumpatensdisruptsdnamethylationwithaminuteeffectontransposonregulationanddevelopment |