Cargando…
Detection of malignancy in whole slide images of endometrial cancer biopsies using artificial intelligence
In this study we use artificial intelligence (AI) to categorise endometrial biopsy whole slide images (WSI) from digital pathology as either “malignant”, “other or benign” or “insufficient”. An endometrial biopsy is a key step in diagnosis of endometrial cancer, biopsies are viewed and diagnosed by...
Autores principales: | Fell, Christina, Mohammadi, Mahnaz, Morrison, David, Arandjelović, Ognjen, Syed, Sheeba, Konanahalli, Prakash, Bell, Sarah, Bryson, Gareth, Harrison, David J., Harris-Birtill, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9994759/ https://www.ncbi.nlm.nih.gov/pubmed/36888621 http://dx.doi.org/10.1371/journal.pone.0282577 |
Ejemplares similares
-
Weakly supervised learning and interpretability for endometrial whole slide image diagnosis
por: Mohammadi, Mahnaz, et al.
Publicado: (2022) -
Reproducibility of deep learning in digital pathology whole slide image analysis
por: Fell, Christina, et al.
Publicado: (2022) -
Lymphocyte Classification from Hoechst Stained Slides with Deep Learning
por: Cooper, Jessica, et al.
Publicado: (2022) -
Deep Learning for Whole Slide Image Analysis: An Overview
por: Dimitriou, Neofytos, et al.
Publicado: (2019) -
Corrigendum: Deep Learning for Whole Slide Image Analysis: An Overview
por: Dimitriou, Neofytos, et al.
Publicado: (2020)