Cargando…

HBZ upregulates myoferlin expression to facilitate HTLV-1 infection

The complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1), primarily infects CD4(+) T-cells in vivo. Infectious spread within this cell population requires direct contact between virally-infected and target cells. The HTLV-1 accessory protein, HBZ, was recently shown to enhance HTLV-1 infe...

Descripción completa

Detalles Bibliográficos
Autores principales: Polakowski, Nicholas, Sarker, Md Abu Kawsar, Hoang, Kimson, Boateng, Georgina, Rushing, Amanda W., Kendle, Wesley, Pique, Claudine, Green, Patrick L., Panfil, Amanda R., Lemasson, Isabelle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9994761/
https://www.ncbi.nlm.nih.gov/pubmed/36827461
http://dx.doi.org/10.1371/journal.ppat.1011202
Descripción
Sumario:The complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1), primarily infects CD4(+) T-cells in vivo. Infectious spread within this cell population requires direct contact between virally-infected and target cells. The HTLV-1 accessory protein, HBZ, was recently shown to enhance HTLV-1 infection by activating intracellular adhesion molecule 1 (ICAM-1) expression, which promotes binding of infected cells to target cells and facilitates formation of a virological synapse. In this study we show that HBZ additionally enhances HTLV-1 infection by activating expression of myoferlin (MyoF), which functions in membrane fusion and repair and vesicle transport. Results from ChIP assays and quantitative reverse transcriptase PCR indicate that HBZ forms a complex with c-Jun or JunB at two enhancer sites within the MYOF gene and activates transcription through recruitment of the coactivator p300/CBP. In HTLV-1-infected T-cells, specific inhibition of MyoF using the drug, WJ460, or shRNA-mediated knockdown of MyoF reduced infection efficiency. This effect was associated with a decrease in cell adhesion and an intracellular reduction in the abundance of HTLV-1 envelope (Env) surface unit (SU) and transmembrane domain (TM). Lysosomal protease inhibitors partially restored SU levels in WJ460-treated cells, and SU localization to LAMP-2 sites was increased by MyoF knockdown, suggesting that MyoF restricts SU trafficking to lysosomes for degradation. Consistent with these effects, less SU was associated with cell-free virus particles. Together, these data suggest that MyoF contributes to HTLV-1 infection through modulation of Env trafficking and cell adhesion.