Cargando…
Nucleophilic Reactivity at a =CH Arm of a Lutidine-Based CNC/Rh System: Unusual Alkyne and CO(2) Activation
[Image: see text] Reaction of an amido pincer complex [(CNC)*Rh(CO)] (1) (CNC* is the deprotonated form of CNC) with carbon dioxide gave a neutral complex [(CNC-CO(2))(Mes)*Rh(CO)] (2), which is the result of a C–C bond-forming reaction between the deprotonated arm of the CNC* ligand and CO(2). The...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9994788/ https://www.ncbi.nlm.nih.gov/pubmed/35476902 http://dx.doi.org/10.1021/acs.inorgchem.2c00617 |
Sumario: | [Image: see text] Reaction of an amido pincer complex [(CNC)*Rh(CO)] (1) (CNC* is the deprotonated form of CNC) with carbon dioxide gave a neutral complex [(CNC-CO(2))(Mes)*Rh(CO)] (2), which is the result of a C–C bond-forming reaction between the deprotonated arm of the CNC* ligand and CO(2). The molecular structure of 2 showed a zwitterionic complex, where the CO(2) moiety is covalently connected to the former =CH arm of the CNC* pincer ligand. The unusual structure of 1 allowed us to explore the reactivity of the CO(2) moiety with selected primary amines RNH(2) (benzylamine and ammonia), which afforded cationic complexes [(CNC)(Mes)Rh(CO)][HRNC(O)O] (R = Bz (3), H (4)). Compounds 3 and 4 are the result of a C–N coupling between the incoming amine and the CO(2) fragment covalently connected to the pincer ligand in 2, a process that involves protonation of the “CH–CO(2)” fragment in 2 from the respective amines. Once revealed the nucleophilic character of the =CH fragment in 1, we explored its reactivity with alkynes, a study that enlightened a novel reactivity trend in alkyne activation. Reaction of 1 with terminal alkynes RC≡CH (R = Ph, 2-py, 4-C(6)H(4)-CF(3)) yielded neutral complexes [(CNC-CH=CHR)(Mes)*Rh(CO)] (R = Ph (5), 2-py (6), 4-C(6)H(4)-CF(3) (7)) in good yields. Deuterium labeling experiments with PhC≡CD confirmed that complex 5 is the product of a formal insertion of the alkyne into the C(sp(2))–H bond of the deprotonated arm in 1. This structural proposal was further confirmed by the X-ray molecular structure of phenyl complex 5, which showed the alkyne covalently linked to the pincer ligand. Besides, this novel transformation was analyzed by DFT methods and showed a metal–ligand cooperative mechanism, based on the initial electrophilic attack of the alkyne to the =CH arm of the CNC(Mes)* ligand (making a new C–C bond) followed by the action of a protic base (HN(SiMe(3))(2)), which is able to perform a proton rearrangement that leads to the final product 5. |
---|