Cargando…
Knots are not for naught: Design, properties, and topology of hierarchical intertwined microarchitected materials
Lightweight and tough engineered materials are often designed with three-dimensional hierarchy and interconnected structural members whose junctions are detrimental to their performance because they serve as stress concentrations for damage accumulation and lower mechanical resilience. We introduce...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995035/ https://www.ncbi.nlm.nih.gov/pubmed/36888702 http://dx.doi.org/10.1126/sciadv.ade6725 |
Sumario: | Lightweight and tough engineered materials are often designed with three-dimensional hierarchy and interconnected structural members whose junctions are detrimental to their performance because they serve as stress concentrations for damage accumulation and lower mechanical resilience. We introduce a previously unexplored class of architected materials, whose components are interwoven and contain no junctions, and incorporate micro-knots as building blocks within these hierarchical networks. Tensile experiments, which show close quantitative agreements with an analytical model for overhand knots, reveal that knot topology allows a new regime of deformation capable of shape retention, leading to a ~92% increase in absorbed energy and an up to ~107% increase in failure strain compared to woven structures, along with an up to ~11% increase in specific energy density compared to topologically similar monolithic lattices. Our exploration unlocks knotting and frictional contact to create highly extensible low-density materials with tunable shape reconfiguration and energy absorption capabilities. |
---|