Cargando…
Long non-coding RNA lincRNA-erythroid prosurvival attenuates inflammation by enhancing myosin heavy chain 6 stability through recruitment of heterogeneous nuclear ribonucleoprotein L in myocardial infarction
Myocardial infarction (MI), a prevalent cardiac disorder with high mortality, leads to severe heart injury associated with inflammation and cardiomyocyte apoptosis. Long non-coding RNAs have been widely found to participate in the progression of MI. Here, we aimed to explore the impact of lincRNA-er...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995127/ https://www.ncbi.nlm.nih.gov/pubmed/36694458 http://dx.doi.org/10.1080/21655979.2022.2086376 |
Sumario: | Myocardial infarction (MI), a prevalent cardiac disorder with high mortality, leads to severe heart injury associated with inflammation and cardiomyocyte apoptosis. Long non-coding RNAs have been widely found to participate in the progression of MI. Here, we aimed to explore the impact of lincRNA-erythroid prosurvival (EPS) on MI-induced inflammation and cardiomyocyte apoptosis. Significantly, lincRNA-EPS was lowly expressed in MI mice and in oxygen and glucose deprivation (OGD)-treated HL-1 cells. Echocardiography analysis revealed that lincRNA-EPS overexpression increased left ventricular ejection fraction and left ventricular fraction shortening, and decreased left ventricular internal diameter at end systole and left ventricular internal diameter at end diastole in a mouse model. In our study, the expression levels of interleukin-6, tumor necrosis factor-alpha, interleukin-1β, and interleukin-18 were upregulated in the MI mice and OGD-treated HL-1 cells, while lincRNA-EPS overexpression reversed these phenotypes. Meanwhile, lincRNA-EPS reduced MI-induced cardiomyocyte apoptosis in vivo and in vitro. Mechanically, lincRNA-EPS interacted with myosin heavy chain 6 (MYH6) and heterogeneous nuclear ribonucleoprotein L (HNRNPL), and the depletion of lincRNA-EPS and HNRNPL inhibited MYH6 mRNA stability in HL-1 cells. HNRNPL knockdown blocked lincRNA-EPS overexpression-induced MYH6 expression in the system. The depletion of MYH6 and HNRNPL could rescue lincRNA-EPS overexpression-reduced inflammation and apoptosis in HL-1 cells. Thus, we conclude that lincRNA-EPS attenuates inflammation and apoptosis in MI-induced myocardial injury by maintaining MYH6 stability through the recruitment of HNRNPL. |
---|