Cargando…
Machine Learning Techniques for Antimicrobial Resistance Prediction of Pseudomonas Aeruginosa from Whole Genome Sequence Data
AIM: Due to the growing availability of genomic datasets, machine learning models have shown impressive diagnostic potential in identifying emerging and reemerging pathogens. This study aims to use machine learning techniques to develop and compare a model for predicting bacterial resistance to a pa...
Autores principales: | Noman, Sohail M., Zeeshan, Muhammad, Arshad, Jehangir, Deressa Amentie, Melkamu, Shafiq, Muhammad, Yuan, Yumeng, Zeng, Mi, Li, Xin, Xie, Qingdong, Jiao, Xiaoyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995192/ https://www.ncbi.nlm.nih.gov/pubmed/36909968 http://dx.doi.org/10.1155/2023/5236168 |
Ejemplares similares
-
An Intelligent Cost-Efficient System to Prevent the Improper Posture Hazards in Offices Using Machine Learning Algorithms
por: Arshad, Jehangir, et al.
Publicado: (2022) -
Microbiomes and Resistomes in Biopsy Tissue and Intestinal Lavage Fluid of Colorectal Cancer
por: Yuan, Yumeng, et al.
Publicado: (2021) -
Fault-Level Grading of Photovoltaic Cells Employing Lightweight Deep Learning Models
por: Khosa, Ikramullah, et al.
Publicado: (2023) -
An Empirical Study on Diabetes Depression over Distress Evaluation Using Diagnosis Statistical Manual and Chi-Square Method
por: Noman, Sohail M., et al.
Publicado: (2021) -
Genomic diversity of resistant and virulent factors of Burkholderia pseudomallei clinical strains recovered from Guangdong using whole genome sequencing
por: Shafiq, Muhammad, et al.
Publicado: (2022)