Cargando…

Suppression of CEBPδ recovers exhaustion in anti-metastatic immune cells

The pre-metastatic microenvironment consists of pro-metastatic and anti-metastatic immune cells in the early stages of cancer, when the primary tumor begins to proliferate. Redundantly, pro-inflammatory immune cells predominated during tumor growth. Although it is well known that pre-metastatic inna...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Chenxue, Kato, Masayoshi, Tomita, Takeshi, Han, Yibing, Hiratsuka, Sachie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995318/
https://www.ncbi.nlm.nih.gov/pubmed/36890150
http://dx.doi.org/10.1038/s41598-023-30476-4
Descripción
Sumario:The pre-metastatic microenvironment consists of pro-metastatic and anti-metastatic immune cells in the early stages of cancer, when the primary tumor begins to proliferate. Redundantly, pro-inflammatory immune cells predominated during tumor growth. Although it is well known that pre-metastatic innate immune cells and immune cells fighting primary tumor cells become exhausted, the mechanism by which this occurs is unknown. We discovered that anti-metastatic NK cells were mobilized from the liver to the lung during primary tumor progression and that the transcription factor CEBPδ, which was upregulated in a tumor-stimulated liver environment, inhibited NK cell attachment to the fibrinogen-rich bed in pulmonary vessels and sensitization to the environmental mRNA activator. CEBPδ-siRNA treated anti-metastatic NK cells regenerated the binding proteins that support sitting in fibrinogen-rich soil, such as vitronectin and thrombospondin, increasing fibrinogen attachment. Furthermore, CEBPδ knockdown restored an RNA-binding protein, ZC3H12D, which captured extracellular mRNA to increase tumoricidal activity. Refreshed NK cells using CEBPδ-siRNA with anti-metastatic abilities would work at metastatic risk areas in the pre-metastatic phase, resulting in a reduction in lung metastasis. Furthermore, tissue-specific siRNA-based therapy in lymphocyte exhaustion may be beneficial in the treatment of early metastases.