Cargando…
Comprehensive analysis of clinical data for COVID-19 outcome estimation with machine learning models
COVID-19 is a global threat for the healthcare systems due to the rapid spread of the pathogen that causes it. In such situation, the clinicians must take important decisions, in an environment where medical resources can be insufficient. In this task, the computer-aided diagnosis systems can be ver...
Autores principales: | Morís, Daniel I., de Moura, Joaquim, Marcos, Pedro J., Rey, Enrique Míguez, Novo, Jorge, Ortega, Marcos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995330/ https://www.ncbi.nlm.nih.gov/pubmed/36915863 http://dx.doi.org/10.1016/j.bspc.2023.104818 |
Ejemplares similares
-
Data augmentation approaches using cycle-consistent adversarial networks for improving COVID-19 screening in portable chest X-ray images
por: Morís, Daniel Iglesias, et al.
Publicado: (2021) -
Does imbalance in chest X-ray datasets produce biased deep learning approaches for COVID-19 screening?
por: Álvarez-Rodríguez, Lorena, et al.
Publicado: (2022) -
Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19
por: Vidal, Plácido L., et al.
Publicado: (2021) -
Fully automatic deep convolutional approaches for the analysis of COVID-19 using chest X-ray images
por: de Moura, Joaquim, et al.
Publicado: (2022) -
A new generative approach for optical coherence tomography data scarcity: unpaired mutual conversion between scanning presets
por: Gende, Mateo, et al.
Publicado: (2023)