Cargando…

Exponential increase of transition rates in metastable systems driven by non-Gaussian noise

Noise-induced escape from metastable states governs a plethora of transition phenomena in physics, chemistry, and biology. While the escape problem in the presence of thermal Gaussian noise has been well understood since the seminal works of Arrhenius and Kramers, many systems, in particular living...

Descripción completa

Detalles Bibliográficos
Autores principales: Baule, Adrian, Sollich, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995508/
https://www.ncbi.nlm.nih.gov/pubmed/36890184
http://dx.doi.org/10.1038/s41598-023-30577-0
Descripción
Sumario:Noise-induced escape from metastable states governs a plethora of transition phenomena in physics, chemistry, and biology. While the escape problem in the presence of thermal Gaussian noise has been well understood since the seminal works of Arrhenius and Kramers, many systems, in particular living ones, are effectively driven by non-Gaussian noise for which the conventional theory does not apply. Here we present a theoretical framework based on path integrals that allows the calculation of both escape rates and optimal escape paths for a generic class of non-Gaussian noises. We find that non-Gaussian noise always leads to more efficient escape and can enhance escape rates by many orders of magnitude compared with thermal noise, highlighting that away from equilibrium escape rates cannot be reliably modelled based on the traditional Arrhenius–Kramers result. Our analysis also identifies a new universality class of non-Gaussian noises, for which escape paths are dominated by large jumps.