Cargando…
The abdominal aortic aneurysm-related disease model based on machine learning predicts immunity and m1A/m5C/m6A/m7G epigenetic regulation
Introduction: Abdominal aortic aneurysms (AAA) are among the most lethal non-cancerous diseases. A comprehensive analysis of the AAA-related disease model has yet to be conducted. Methods: Weighted correlation network analysis (WGCNA) was performed for the AAA-related genes. Machine learning random...
Autores principales: | Tian, Yu, Fu, Shengjie, Zhang, Nan, Zhang, Hao, Li, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995589/ https://www.ncbi.nlm.nih.gov/pubmed/36911406 http://dx.doi.org/10.3389/fgene.2023.1131957 |
Ejemplares similares
-
An m6A/m5C/m1A/m7G-Related Long Non-coding RNA Signature to Predict Prognosis and Immune Features of Glioma
por: Shao, Dongqi, et al.
Publicado: (2022) -
Bioinformatic analyses of the role of m6A RNA methylation regulators in abdominal aortic aneurysm
por: Fu, Changgeng, et al.
Publicado: (2022) -
Analysis of mRNA m(6)A modification and mRNA expression profiles in middle ear cholesteatoma
por: Xie, Shumin, et al.
Publicado: (2023) -
Comprehensive analysis of m(7)G modification patterns based on potential m(7)G regulators and tumor microenvironment infiltration characterization in lung adenocarcinoma
por: Ma, Shouzheng, et al.
Publicado: (2022) -
Transcriptome profiling of abdominal aortic tissues reveals alterations in mRNAs of Takayasu arteritis
por: Yuqing, Miao, et al.
Publicado: (2022)